-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathOC_Gaussian_fixed.m
166 lines (137 loc) · 6.63 KB
/
OC_Gaussian_fixed.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
% OC_Gaussian_fixed - Function for executing the complex-valued MMSE estimate of
% a Gaussian distributed sparse signal using orthoganal clustering approach
% where "equal length semi-orthogonal clusters are used".
%
% This function implements the algorithm described in "Structure-Based
% Bayesian Sparse Reconstruction", Ahmed A. Quadeer & Tareq Y. Al-Naffouri.
% OC_Gaussian_fixed will find a MMSE estimate of sparse solutions "x"
% for the underdetermined system of linear equations
% yp = Psi*x + n,
% where n is complex Gaussian additive noise,
% x is Gaussian distributed, and
% Psi is the partial DFT measurement matrix
%
% SYNTAX: xmmse_final = OC_Gaussian_fixed(yp,Psi,sigma_imp,N0,pp,index,L)
%
% Outputs: xmmse_final = The MMSE estimate of the sparse vector
%
% Inputs: yp = n x 1 observation vector
% Psi = n x m measurement/sensing matrix (partial DFT matrix)
% sigma_imp = Non-zero elements' variance in the sparse vector
% N0 = Noise variance
% pp = Probability of non-zero elements occurence
% index = "n-length" vector representing indices of continuous
% sensing columns
% L = Length of the clusters (e.g., 4,8,16,32,...)
%
% Coded by: Ahmed Abdul Quadeer
% E-mail: [email protected]
% Last change: Dec. 12, 2012
% Copyright (c) Ahmed Abdul Quadeer, Tareq Y. Al-Naffouri, 2012
function xmmse_final = ...
OC_Gaussian_fixed(yp,Psi,sigma_imp,N0,pp,index,L)
%% Initialization
sig2s = [0; sigma_imp]; %Sparse signal variance
sig2w=N0; %Noise variance
%% Step 1: Determine dominant positions using correlation
[n,m] = size(Psi); %Size of Psi
yp_corr = Psi'*yp; %Performing correlation
%% Step 2: Form equal length semi-orthogonal clusters
[~,b1] = sort(abs(yp_corr),'descend');
P = min(n, 1 + ceil(m*pp + erfcinv(1e-1)*sqrt(2*m*pp*(1 - pp)))); % Approx. no. of clusters to be formed
s1 = zeros(P,1);
J_cluster = cell(P,1);
kk = 1;
for mm = 1:m
s1(kk) = b1(mm);
if kk == 1
J_cluster{kk} = mod(s1(kk)-L/2 : s1(kk)+L/2-1,m);
J_cluster{kk}([J_cluster{kk}] == 0) = m;
kk = kk+1;
else
if sum(ismember(mod(s1(kk)-L/2:s1(kk)+L/2-1,m),[J_cluster{:}]))==0 %check if any member of the cluster to be made is present in previous clusters
J_cluster{kk} = mod(s1(kk)-L/2 : s1(kk)+L/2-1,m);
J_cluster{kk}([J_cluster{kk}] == 0) = m;
kk = kk+1;
end
end
if kk > P
break
end
end
%Re-ordering sort_b11 according to the clusters (as clusters are not in
%correct order after we joined first n last cluster)
temp = [];
for kk = 1:length(J_cluster)
temp = [temp J_cluster{kk}];
end
sort_b11 = temp;
%% Step 3: Find the dominant supports and their likelihoods (Main algorithm)
%Initialization
D = L;
P_c = 2; %Search length within a cluster
AA = Psi;
A = AA(:,sort_b11(1:L));
ps = [1 - pp; pp];
T = cell(P,1); %Indices of active taps
nu = cell(P,1); %Likelihood values
xmmse = cell(P,1); %Initial MMSE estimate of x
Omega = cell(D,P_c);
Xi = cell(D,P_c);
xmmse_p = zeros(m,P); %MMSE estimate of all clusters
nup = zeros(2*L+1,P); %Vector consisting of all best likelihoods
p_nup = zeros(2*L+1,P); %Probability of best likelihoods
for p = 1:P %Loop for each cluster p
T{p} = cell(D,P_c); %Indices of active taps in cluster p
nu{p} = -inf*ones(D,P_c); %Likelihood values in cluster p
xmmse{p} = cell(D,P_c); %MMSE estimate of cluster p
if p == 1 %If first cluster
Omega_root = A/sig2w;
Xi_root = abs(sig2s(2)*(1 + sig2s(2)*sum(conj(A).*Omega_root)).^(-1));
z = yp;
else %If subsequent clusters
dd = mod(J_cluster{p}(1)-J_cluster{1}(1),m); %Finding the difference delta between cluster p and cluster 1
wd = (exp(-sqrt(-1)*(2*pi)/m*(index(1:n)-1)*dd)).'; %Calculating the modulation vector
z = yp.*conj(wd); %Modulation
end
nu_root = -norm(z)^2/sig2w + L*log(ps(1)); %Root node
nuxt_root = zeros(1,L);
nuxt_root(1:L) = nu_root + log(Xi_root/sig2s(2)) + ...
Xi_root.*abs(z'*Omega_root).^2 + log(ps(2)/ps(1));
p_c = 1;
for d = 1:D
nstar = d;
T{p}{d,p_c} = J_cluster{p}(nstar);
nu{p}(d,p_c) = nuxt_root(nstar);
if p == 1 %Only need to update Omega and Xi for first cluster. Remaining clusters use the same values
Omega{d,p_c} = Omega_root; %Omega{1,:} will all be equal to Omega_root
Xi{d,p_c} = Xi_root;
Omega{d,p_c+1} = Omega{d,p_c} - Omega{d,p_c}(:,nstar)*Xi{d,p_c}(nstar)*( Omega{d,p_c}(:,nstar)'*A );
Xi{d,p_c+1} = abs(sig2s(2)*(1 + sig2s(2)*sum(conj(A).*Omega{d,p_c+1})).^(-1));
end
xmmse{p}{d,p_c} = zeros(m,1);
xmmse{p}{d,p_c}(T{p}{d,p_c}) = sig2s(2)*Omega{d,p_c+1}(:,nstar)'*z;
% nuxt = zeros(1,L);
nuxt(1:L) = nu{p}(d,p_c) + log(Xi{d,p_c+1}/sig2s(2)) ...
+ Xi{d,p_c+1}.*abs(z'*Omega{d,p_c+1}).^2 + log(ps(2)/ps(1));
% can't activate an already activated coefficient!
nuxt(nstar) = -inf*ones(size(T{p}{d,p_c}));
[nustar,nqstar] = max(nuxt); %Find best extension
while sum(abs(nustar-nu{p}(1:d-1,p_c+1)) < 1e-8) %If same as explored node...
nuxt(nqstar) = -inf; %Mark extension as redundant
[nustar, nqstar] = max(nuxt); %Find next best extension
end
nstar2 = mod(nqstar - 1, m) + 1; %Index of best extension
nu{p}(d,p_c+1) = nustar; %Replace worst explored node...
T{p}{d,p_c+1} = [T{p}{d,p_c}, J_cluster{p}(nstar2)];
Omegatt = Omega{d,p_c+1} - Omega{d,p_c+1}(:,nstar2)*Xi{d,p_c+1}(nstar2)*( Omega{d,p_c+1}(:,nstar2)'*A); %AA(:,sort_b11((p-1)*L+1:p*L))
Xitt = abs(sig2s(2)*(1 + sig2s(2)*sum(conj(A).*Omegatt)).^(-1));
xmmse{p}{d,p_c+1} = zeros(m,1);
xmmse{p}{d,p_c+1}(T{p}{d,p_c+1}) = sig2s(2)*Omegatt(:,[nstar,nstar2])'*z;
end
%% Step 4: Evaluate the estimate of x
nup(:,p) = [nu_root ; nu{p}(:)]; %including nu_root to include the case when no impulse is present in cluster
p_nup(:,p) = exp(nup(:,p)-max(nup(:,p)))/sum(exp(nup(:,p)-max(nup(:,p))));
xmmse_p(:,p) = [zeros(m,1) xmmse{p}{:}]*p_nup(:,p);
end
xmmse_final = sum(xmmse_p,2);