diff --git a/Cubical/Cohomology/EilenbergMacLane/EilenbergSteenrod.agda b/Cubical/Cohomology/EilenbergMacLane/EilenbergSteenrod.agda index b6cdb7aaa0..c669679958 100644 --- a/Cubical/Cohomology/EilenbergMacLane/EilenbergSteenrod.agda +++ b/Cubical/Cohomology/EilenbergMacLane/EilenbergSteenrod.agda @@ -61,6 +61,22 @@ module _ where Hmap∙ (pos n) = coHomHom∙ n Hmap∙ (negsuc n) f = idGroupHom + compAx : (n : ℤ) {A B C : Pointed ℓ'} + (g : B →∙ C) (f : A →∙ B) → + compGroupHom (Hmap∙ n g) (Hmap∙ n f) + ≡ Hmap∙ n (g ∘∙ f) + compAx (pos n) g f = Σ≡Prop (λ _ → isPropIsGroupHom _ _) + (funExt (ST.elim (λ _ → isSetPathImplicit) + λ a → cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousEM n) refl))) + compAx (negsuc n) g f = Σ≡Prop (λ _ → isPropIsGroupHom _ _) refl + + idAx : (n : ℤ) {A : Pointed ℓ'} → + Hmap∙ n (idfun∙ A) ≡ idGroupHom + idAx (pos n) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) + (funExt (ST.elim (λ _ → isSetPathImplicit) + λ f → cong ∣_∣₂ (ΣPathP (refl , sym (lUnit (snd f)))))) + idAx (negsuc n) = refl + suspMap : (n : ℤ) {A : Pointed ℓ'} → AbGroupHom (coHomRedℤ G (sucℤ n) (Susp (typ A) , north)) (coHomRedℤ G n A) @@ -175,6 +191,8 @@ module _ where satisfies-ES : ∀ {ℓ ℓ'} (G : AbGroup ℓ) → coHomTheory {ℓ'} (coHomRedℤ G) Hmap (satisfies-ES G) = coHomRedℤ.Hmap∙ + HMapComp (satisfies-ES G) = coHomRedℤ.compAx + HMapId (satisfies-ES G) = coHomRedℤ.idAx fst (Suspension (satisfies-ES G)) n = GroupIso→GroupEquiv (coHomRedℤ.suspMapIso n) snd (Suspension (satisfies-ES G)) f (pos n) = funExt (ST.elim (λ _ → isSetPathImplicit) λ f @@ -286,27 +304,10 @@ module _ where invGroupEquiv (GroupIso→GroupEquiv lUnitGroupIso^) open coHomTheoryGen -private - compAx : ∀ {ℓ ℓ'} (G : AbGroup ℓ) (n : ℤ) {A B C : Pointed ℓ'} - (g : B →∙ C) (f : A →∙ B) → - compGroupHom (coHomRedℤ.Hmap∙ {G = G} n g) (coHomRedℤ.Hmap∙ n f) - ≡ coHomRedℤ.Hmap∙ n (g ∘∙ f) - compAx G (pos n) g f = Σ≡Prop (λ _ → isPropIsGroupHom _ _) - (funExt (ST.elim (λ _ → isSetPathImplicit) - λ a → cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousEM n) refl))) - compAx G (negsuc n) g f = Σ≡Prop (λ _ → isPropIsGroupHom _ _) refl - - idAx : ∀ {ℓ ℓ'} (G : AbGroup ℓ) (n : ℤ) {A : Pointed ℓ'} → - coHomRedℤ.Hmap∙ {G = G} n (idfun∙ A) ≡ idGroupHom - idAx G (pos n) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) - (funExt (ST.elim (λ _ → isSetPathImplicit) - λ f → cong ∣_∣₂ (ΣPathP (refl , sym (lUnit (snd f)))))) - idAx G (negsuc n) = refl - satisfies-ES-gen : ∀ {ℓ ℓ'} (G : AbGroup ℓ) → coHomTheoryGen {ℓ'} (coHomRedℤ G) Hmap (satisfies-ES-gen G) = coHomTheory.Hmap (satisfies-ES G) -HMapComp (satisfies-ES-gen G) = compAx G -HMapId (satisfies-ES-gen G) = idAx G +HMapComp (satisfies-ES-gen G) = coHomTheory.HMapComp (satisfies-ES G) +HMapId (satisfies-ES-gen G) = coHomTheory.HMapId (satisfies-ES G) Suspension (satisfies-ES-gen G) = coHomTheory.Suspension (satisfies-ES G) Exactness (satisfies-ES-gen G) = coHomTheory.Exactness (satisfies-ES G) Dimension (satisfies-ES-gen G) = coHomTheory.Dimension (satisfies-ES G)