From aab08fbc381a9b26b4e2d5dcaa4a8d3bc195e1c7 Mon Sep 17 00:00:00 2001 From: Felix Cherubini Date: Wed, 7 Feb 2024 11:01:40 +0100 Subject: [PATCH] simplify --- Cubical/Algebra/Ring/Quotient.agda | 1 - Cubical/Algebra/ZariskiLattice/Base.agda | 1 - .../Algebra/ZariskiLattice/StructureSheaf.agda | 12 +++--------- .../ZariskiLattice/StructureSheafPullback.agda | 16 +++------------- .../ZariskiLattice/UniversalProperty.agda | 1 - 5 files changed, 6 insertions(+), 25 deletions(-) diff --git a/Cubical/Algebra/Ring/Quotient.agda b/Cubical/Algebra/Ring/Quotient.agda index 587050d8ac..a8ce89ad88 100644 --- a/Cubical/Algebra/Ring/Quotient.agda +++ b/Cubical/Algebra/Ring/Quotient.agda @@ -18,7 +18,6 @@ open import Cubical.HITs.SetQuotients.Properties open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal open import Cubical.Algebra.Ring.Kernel -open import Cubical.Tactics.CommRingSolver private variable diff --git a/Cubical/Algebra/ZariskiLattice/Base.agda b/Cubical/Algebra/ZariskiLattice/Base.agda index 92720354c6..06bb4f7909 100644 --- a/Cubical/Algebra/ZariskiLattice/Base.agda +++ b/Cubical/Algebra/ZariskiLattice/Base.agda @@ -33,7 +33,6 @@ open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.Ideal.Sum open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal -open import Cubical.Tactics.CommRingSolver open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice diff --git a/Cubical/Algebra/ZariskiLattice/StructureSheaf.agda b/Cubical/Algebra/ZariskiLattice/StructureSheaf.agda index b43bd3de6b..78f2aca287 100644 --- a/Cubical/Algebra/ZariskiLattice/StructureSheaf.agda +++ b/Cubical/Algebra/ZariskiLattice/StructureSheaf.agda @@ -304,10 +304,7 @@ module _ {ℓ : Level} (R' : CommRing ℓ) where instance h⁻ᵐ : (h ^ m) /1 ∈ₚ (R[1/ h ]AsCommRing ˣ) h⁻ᵐ = [ 1r , h ^ m , ∣ m , refl ∣₁ ] - , eq/ _ _ ((1r , containsOne) , path (h ^ m)) - where - path : ∀ x → 1r · (x · 1r) · 1r ≡ 1r · 1r · (1r · x) - path _ = solve! R' + , eq/ _ _ ((1r , containsOne) , solve! R') β : FinVec R[1/ h ] (suc n) β i = ((h ^ m) /1) ⁻¹ · α i /1 @@ -360,12 +357,9 @@ module _ {ℓ : Level} (R' : CommRing ℓ) where pres1 (snd (coneOut /1/1Cone (pair i j i