From 07f46c2fb6a9f430fb99b6422d1231d911b4164c Mon Sep 17 00:00:00 2001 From: jamesmckinna <31931406+jamesmckinna@users.noreply.github.com> Date: Sun, 7 Jul 2024 04:23:47 +0200 Subject: [PATCH] implicit to explicit in `liftRel` (#2433) --- src/Algebra/Construct/Pointwise.agda | 44 ++++++++++++++-------------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/src/Algebra/Construct/Pointwise.agda b/src/Algebra/Construct/Pointwise.agda index 842e36b1ed..5b984dbc19 100644 --- a/src/Algebra/Construct/Pointwise.agda +++ b/src/Algebra/Construct/Pointwise.agda @@ -43,7 +43,7 @@ private lift₂ _∙_ g h x = (g x) ∙ (h x) liftRel : Rel C ℓ → Rel (A → C) (a ⊔ ℓ) - liftRel _≈_ g h = ∀ {x} → (g x) ≈ (h x) + liftRel _≈_ g h = ∀ x → (g x) ≈ (h x) ------------------------------------------------------------------------ @@ -51,9 +51,9 @@ private isEquivalence : IsEquivalence _≈_ → IsEquivalence (liftRel _≈_) isEquivalence isEquivalence = record - { refl = λ {f x} → refl {f x} - ; sym = λ f≈g → sym f≈g - ; trans = λ f≈g g≈h → trans f≈g g≈h + { refl = λ {f} _ → refl {f _} + ; sym = λ f≈g _ → sym (f≈g _) + ; trans = λ f≈g g≈h _ → trans (f≈g _) (g≈h _) } where open IsEquivalence isEquivalence @@ -63,21 +63,21 @@ isEquivalence isEquivalence = record isMagma : IsMagma _≈_ _∙_ → IsMagma (liftRel _≈_) (lift₂ _∙_) isMagma isMagma = record { isEquivalence = isEquivalence M.isEquivalence - ; ∙-cong = λ g h → M.∙-cong g h + ; ∙-cong = λ g h _ → M.∙-cong (g _) (h _) } where module M = IsMagma isMagma isSemigroup : IsSemigroup _≈_ _∙_ → IsSemigroup (liftRel _≈_) (lift₂ _∙_) isSemigroup isSemigroup = record { isMagma = isMagma M.isMagma - ; assoc = λ f g h → M.assoc (f _) (g _) (h _) + ; assoc = λ f g h _ → M.assoc (f _) (g _) (h _) } where module M = IsSemigroup isSemigroup isBand : IsBand _≈_ _∙_ → IsBand (liftRel _≈_) (lift₂ _∙_) isBand isBand = record { isSemigroup = isSemigroup M.isSemigroup - ; idem = λ f → M.idem (f _) + ; idem = λ f _ → M.idem (f _) } where module M = IsBand isBand @@ -85,14 +85,14 @@ isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ → IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_) isCommutativeSemigroup isCommutativeSemigroup = record { isSemigroup = isSemigroup M.isSemigroup - ; comm = λ f g → M.comm (f _) (g _) + ; comm = λ f g _ → M.comm (f _) (g _) } where module M = IsCommutativeSemigroup isCommutativeSemigroup isMonoid : IsMonoid _≈_ _∙_ ε → IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) isMonoid isMonoid = record { isSemigroup = isSemigroup M.isSemigroup - ; identity = (λ f → M.identityˡ (f _)) , λ f → M.identityʳ (f _) + ; identity = (λ f _ → M.identityˡ (f _)) , λ f _ → M.identityʳ (f _) } where module M = IsMonoid isMonoid @@ -100,7 +100,7 @@ isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε → IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) isCommutativeMonoid isCommutativeMonoid = record { isMonoid = isMonoid M.isMonoid - ; comm = λ f g → M.comm (f _) (g _) + ; comm = λ f g _ → M.comm (f _) (g _) } where module M = IsCommutativeMonoid isCommutativeMonoid @@ -108,8 +108,8 @@ isGroup : IsGroup _≈_ _∙_ ε _⁻¹ → IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) isGroup isGroup = record { isMonoid = isMonoid M.isMonoid - ; inverse = (λ f → M.inverseˡ (f _)) , λ f → M.inverseʳ (f _) - ; ⁻¹-cong = λ f → M.⁻¹-cong f + ; inverse = (λ f _ → M.inverseˡ (f _)) , λ f _ → M.inverseʳ (f _) + ; ⁻¹-cong = λ f _ → M.⁻¹-cong (f _) } where module M = IsGroup isGroup @@ -117,7 +117,7 @@ isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ → IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) isAbelianGroup isAbelianGroup = record { isGroup = isGroup M.isGroup - ; comm = λ f g → M.comm (f _) (g _) + ; comm = λ f g _ → M.comm (f _) (g _) } where module M = IsAbelianGroup isAbelianGroup @@ -125,10 +125,10 @@ isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid - ; *-cong = λ g h → M.*-cong g h - ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) - ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) - ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) + ; *-cong = λ g h _ → M.*-cong (g _) (h _) + ; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _) + ; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _) + ; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _) } where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero @@ -136,7 +136,7 @@ isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# → IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) isSemiring isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero - ; zero = (λ f → M.zeroˡ (f _)) , λ f → M.zeroʳ (f _) + ; zero = (λ f _ → M.zeroˡ (f _)) , λ f _ → M.zeroʳ (f _) } where module M = IsSemiring isSemiring @@ -144,10 +144,10 @@ isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# → IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#) isRing isRing = record { +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup - ; *-cong = λ g h → M.*-cong g h - ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) - ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) - ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) + ; *-cong = λ g h _ → M.*-cong (g _) (h _) + ; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _) + ; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _) + ; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _) } where module M = IsRing isRing