-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtileGAN_server.py
1268 lines (1036 loc) · 47.7 KB
/
tileGAN_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from multiprocessing.managers import BaseManager
from sklearn.cluster import KMeans
import os
import glob
import tensorflow as tf
import numpy as np
import time
import h5py
from bisect import bisect
from spinner import Spinner
from joblib import load
import pickle
from PIL import Image
import hnswlib
import signal
import socket
## LOOKUP TABLE FOR NETWORK DEPTH
#LEVEL = [ 2, 3, 4, 5, 6, 7, 8, 9, 10]
#SIZES = [ 4, 8, 16, 32, 64, 128, 256, 512, 1024]
DEPTHS = [512, 512, 512, 512, 512, 256, 128, 64, 32]
class TFManager:
"""
TFManager handles the server-side TensorFlow processing of TileGAN
"""
def __init__(self):
self.mergeLevel = 2
self.latentSize = 2
self.tSize = 0
self.numClusters = 0
self.chunkShape = 24 # has to be multiple of 4!
self.useANN = True
self.undoDepth = 5
self.undoCount = 0
self.height = 0
self.width = 0
self.latentDepth = 0
self.clusterSamples = None
self.latentClusters = []
self.latentCDFs = []
self.latentImages = []
self.averageImages = []
self.dominantClusterColors = []
self.output = None
self.networkPath = None
self.networkA = None
self.sessionA = None
self.GsA = None
self.graphA = None
self.networkB = None
self.sessionB = None
self.GsB = None
self.graphB = None
self.networkC = None
self.sessionC = None
self.GsC = None
self.graphC = None
self.latentLookup = None
self.descriptorLookup = None
self.clusterLookup = None
self.annNbrs = None
self.kmeans = None
self.intermLatents = None
self.intermLatentGrid = None
self.latentList = None
self.clusterGrid = None
self.descriptorGrid = None
self.undoStack = None
self.dataset = None
self.guidanceImage = None
availDatasets, _ = self.findDatasets()
print('datasets found in data directory: ', availDatasets)
if len(availDatasets) > 0:
self.dataset = availDatasets[0]
self.initDataset(availDatasets[0])
def findDatasets(self, searchDir=None):
"""
find all available directories in search space
"""
if searchDir is None:
searchDir = 'data'
datasetFolders = [f.name for f in os.scandir(searchDir) if f.is_dir()]
return datasetFolders, self.dataset
# ---------------------------------------------------------------------------------------------------------------------------------------------------------
def initDataset(self, datasetName):
"""
initialize dataset with name dataPath
"""
dataPaths = self.parseDataset(datasetName)
if dataPaths is None:
return
networkPath, descriptorsPath, clustersPath, kmeansPath, annPath, metadata = dataPaths
self.dataset = datasetName
self.networkPath = networkPath
self.initNetworks()
self.initLatentClusters(clustersPath)
self.loadLatents(descriptorsPath)
if self.useANN:
self.initANN(annPath)
else:
pass
# self.initNNRecords()
self.initKMeans(kmeansPath)
self.dominantClusterColors = []
def parseDataset(self, datasetFolder):
"""
extract required files from dataset directory and load them to memory
"""
searchdirs = []
searchdirs += ['data']
targetDir = None
for searchdir in searchdirs:
dir = os.getcwd() if searchdir == '' else os.path.join(os.getcwd(), searchdir)
dir = os.path.join(dir, str(datasetFolder))
if os.path.isdir(dir):
targetDir = dir
break
requiredFiles = True
fnames = glob.glob(os.path.join(targetDir, '*descriptors.hdf5'))
if len(fnames) > 0:
descriptors = fnames[0]
else:
requiredFiles = False
print('no descriptor file found in {}'.format(targetDir))
fnames = glob.glob(os.path.join(targetDir, '*network.pkl'))
if len(fnames) > 0:
network = fnames[0]
else:
requiredFiles = False
print('no network file found in {}'.format(targetDir))
if not requiredFiles:
print('didn\'t find required files in directory: {}'.format(targetDir))
raise ValueError('Could not find valid dataset.')
return None
fnames = glob.glob(os.path.join(targetDir, '*clusters.hdf5'))
if len(fnames) > 0:
clusters = fnames[0]
else:
clusters = os.path.join(targetDir, '{}_clusters.hdf5'.format(datasetFolder))
fnames = glob.glob(os.path.join(targetDir, '*kmeans.joblib'))
if len(fnames) > 0:
kmeans = fnames[0]
else:
kmeans = os.path.join(targetDir, '{}_kmeans.joblib'.format(datasetFolder))
fnames = glob.glob(os.path.join(targetDir, '*ann.bin'))
if len(fnames) > 0:
ann = fnames[0]
else:
ann = os.path.join(targetDir, '{}_ann.bin'.format(datasetFolder))
dataPath = os.path.join(targetDir, 'data.txt')
metadata = {}
if os.path.isfile(dataPath):
with open(dataPath) as f:
for line in f:
c = line.rstrip('\n').split('=')
metadata[c[0]] = int(c[1])
return network, descriptors, clusters, kmeans, ann, metadata
def setMergeLevel(self, level, latentSize=-1):
"""
update merge level and latent size of network
"""
self.mergeLevel = level
if latentSize < 0:
self.latentSize = 2 ** level
else:
self.latentSize = latentSize
print('new level: {} | decrusted width: {}'.format(level, self.latentSize))
self.initNetworks()
def closeSessions(self):
self.sessionA.close()
self.sessionB.close()
self.sessionC.close()
def initNetworks(self):
"""
initialize the networks from the specified network paths.
"""
t1 = time.time()
inResA = 2
outResA = self.mergeLevel
depthA = int(DEPTHS[inResA - 2])
inResB = self.mergeLevel + 1
depthB = int(DEPTHS[inResB - 2])
inSizeB = 2 ** (inResB - 1)
self.latentDepth = depthB
print('Creating session and loading graph for stage A...')
self.sessionA = tf.Session()
#! loading Gs 2x/3x is not ideal
with self.sessionA.as_default():
with open(self.networkPath, 'rb') as file:
Gs = pickle.load(file)
size = Gs.output_shape[-1]
channels = Gs.output_shape[1]
self.outRes = int(np.log2(Gs.output_shape[-1]))
kwargs = {'in_res': inResA, 'out_res': outResA, 'latent_depth': depthA, 'label_size': 0, 'num_channels': channels, 'resolution': size}
self.GsA = Gs.clone_and_update("GsA", kwargs=kwargs, func='networks.G_new')
self.graphA = tf.get_default_graph()
print('Creating session and loading graph for stage B...')
self.sessionB = tf.Session()
with self.sessionB.as_default():
with open(self.networkPath, 'rb') as file:
Gs = pickle.load(file)
outRes = int(np.log2(Gs.output_shape[-1]))
kwargs = {'in_res': inResB, 'out_res': outRes, 'latent_depth': depthB, 'latentSize': [None, depthB, inSizeB, inSizeB], 'label_size': 0, 'num_channels': channels, 'resolution': size}
self.GsB = Gs.clone_and_update("GsB", kwargs=kwargs, func='networks.G_new')
self.graphB = tf.get_default_graph()
print('Creating session and loading graph for stage C...') #USING A SEPARATE STAGE C TO GENERATE SINGLE LATENT OUTPUTS
self.sessionC = tf.Session()
with self.sessionC.as_default():
with open(self.networkPath, 'rb') as file:
Gs = pickle.load(file)
outRes = int(np.log2(Gs.output_shape[-1]))
kwargs = {'in_res': inResB, 'out_res': outRes, 'latent_depth': depthB, 'latentSize': [None, depthB, inSizeB, inSizeB], 'label_size': 0, 'num_channels': channels, 'resolution': size}
self.GsC = Gs.clone_and_update("GsC", kwargs=kwargs, func='networks.G_new')
self.graphC = tf.get_default_graph()
t2 = time.time()
print('initializing networks {:10.2f}s '.format(t2 - t1))
def initLatentClusters(self, clustersPath):
"""
load the clustering from the specified h5py file.
"""
t1 = time.time()
self.latentClusters = []
self.latentCDFs = []
hdf5_file = h5py.File(clustersPath, "r")
self.latentImages = hdf5_file["images"].value
self.averageImages = hdf5_file["averages"].value
self.numClusters = len(self.latentImages)
print('found {} clusters'.format(self.numClusters))
for i in range(self.numClusters):
self.latentClusters.append(hdf5_file["{}".format(i)])
self.latentCDFs.append(hdf5_file["{}_cdf".format(i)])
t2 = time.time()
print('initializing latentClusters {:10.2f}s '.format(t2 - t1))
def getDominantClusterColors(self):
"""
returns the dominant image color for each of the cluster images
"""
if not self.dominantClusterColors:
for image in self.averageImages:
pixels = np.float32(image.reshape(-1, 3))
n_colors = 5
clustering = KMeans(n_clusters=n_colors).fit(pixels)
count = np.bincount(clustering.labels_)
sorted_indices = np.argsort(count)[::-1]
sorted_colors = clustering.cluster_centers_[sorted_indices, :]
self.dominantClusterColors.append(sorted_colors[0].astype(np.uint8))
return self.dominantClusterColors
def getLatentImages(self):
return self.latentImages
def getLatentAverages(self):
return self.averageImages
def loadLatents(self, descriptorsPath):
"""
load the latent bank from the specified h5py
"""
hdf5_file = h5py.File(descriptorsPath, "r")
self.descriptorLookup = hdf5_file["descriptors"].value
self.latentLookup = hdf5_file["latents"].value
self.clusterLookup = hdf5_file["clusters"].value
descriptor = self.descriptorLookup[0]
self.tSize = int(np.sqrt(len(descriptor)/3))
print('tSize is {}'.format(self.tSize))
print('loaded {} latents'.format(len(self.latentLookup)))
def initANN(self, annPath, force=False):
"""
load or initialize approximate nearest neighbor finding in latent database. ANN searching is performed using HNSW
"""
t1 = time.time()
dims = len(self.descriptorLookup[0])
self.annNbrs = hnswlib.Index(space='l2', dim=dims)
if os.path.isfile(annPath) and not force:
print('found existing ANN index, loading...')
self.annNbrs.load_index(annPath)
return
spinner = Spinner()
spinner.start()
print('... creating new ANN index for {} descriptors of dimension {}'.format(len(self.descriptorLookup), dims))
# HNSW Parameter settings
ef_construction = 2000 # reasonable range: 100-2000
ef_search = 2000 # reasonable range: 100-2000 #if higher, better recall but longer retrieval time
M = 100 # reasonable range: 5-100 (higher = more accuracy, longer retrieval time)
self.annNbrs.init_index(max_elements=len(self.descriptorLookup), ef_construction=ef_construction, M=M)
self.annNbrs.add_items(self.descriptorLookup, np.arange(len(self.descriptorLookup)))
self.annNbrs.set_ef(ef_search) # higher ef leads to better accuracy, but slower search
self.annNbrs.save_index(annPath)
spinner.stop()
t2 = time.time()
print('initializing init_ann_records {:10.2f}s '.format(t2 - t1))
def initKMeans(self, kmeansPath):
"""
load or create KMeans from latent database
"""
#global kmeans, descriptorLookup
t1 = time.time()
print('clustering latents...')
spinner = Spinner()
spinner.start()
if os.path.isfile(kmeansPath):
self.kmeans = load(kmeansPath)
print('loaded KMeans!')
else:
print('no saved KMeans found, creating from scratch...')
print('calculating {}-means for {} descriptors'.format(self.numClusters, len(self.descriptorLookup)))
self.kmeans = KMeans(n_clusters=self.numClusters, random_state=0).fit(self.descriptorLookup)
spinner.stop()
#debug does loading work?
t2 = time.time()
print('clustering latents {:10.2f}s '.format(t2 - t1))
def getLeftPadding(self):
return (2 ** self.mergeLevel - self.latentSize) // 2
def getAdjacentClusters(self, y, x):
"""
find clusters of neighboring tiles
"""
tiles_y = int(self.clusterGrid.shape[0] / self.latentSize)
tiles_x = int(self.clusterGrid.shape[1] / self.latentSize)
adjacent_clusters = []
if x > 0:
adjacent_clusters.append(self.clusterGrid[y, x - 1])
if x < tiles_x - 1:
adjacent_clusters.append(self.clusterGrid[y, x + 1])
if y > 0:
adjacent_clusters.append(self.clusterGrid[y - 1, x])
if y < tiles_y - 1:
adjacent_clusters.append(self.clusterGrid[y + 1, x])
return adjacent_clusters
def MRFLatents(self, threshold = 0.15, maxIter = 25, lambda_v = 1, lambda_l = 0.5, lambda_c = 0.1):
"""
run MRF optimization on latent field
"""
t1 = time.time()
outputH = self.output.shape[1]
outputW = self.output.shape[2]
print('output dimensions are: {}x{}'.format(outputH, outputW))
tSize = self.tSize
w = self.latentSize
pad = self.getLeftPadding()
gridY = int(self.clusterGrid.shape[0])
gridX = int(self.clusterGrid.shape[1])
tilesY = int(gridY / self.latentSize)
tilesX = int(gridX / self.latentSize)
outSize = 2 ** (self.outRes - self.mergeLevel)
imgPad = pad * (tSize // (w + 2 * pad))
gSize = tSize - 2 * imgPad
N = 7 # pick a reasonable number of candidates
M = 3 # pick a reasonable number of top-picks
E_m = 0.0 #euclidean distance between output and guidance image
E_n = 1.0 #sum of dissimilarity terms
outputComparisonImage = None
guidanceComparisonImage = None
if self.guidanceImage is not None: #E_m is only relevant if guidance image exists
guidanceComparisonImage = self.guidanceImage
guidancePIL = Image.fromarray(self.guidanceImage)
guidancePIL = guidancePIL.resize((outputW, outputH))
outputComparisonImage = np.array(guidancePIL)
outputComparisonImage = np.rollaxis(outputComparisonImage, 2, 0) #adjust axes to fit output
E_m = np.linalg.norm(self.output - outputComparisonImage)
else:
outArr = np.rollaxis(self.output, 0, 3)
outPIL = Image.fromarray(outArr)
outPIL = outPIL.resize((gSize * tilesX, gSize * tilesY))
guidanceComparisonImage = np.array(outPIL)
totalEnergy = E_m + E_n
i = 0
# until energy threshold is reached, update field and calculate MRF
while totalEnergy > threshold and i < maxIter:
i = i + 1
#randomly sample a latent tile
x = np.random.randint(1, gridX - 2*w) #currently not handling border cases
y = np.random.randint(1, gridY - 2*w)
print('randomly sampling at ({}, {})'.format(x, y))
gX = int(x * guidanceComparisonImage.shape[1]/gridX)
gY = int(y * guidanceComparisonImage.shape[0]/gridY)
tile = guidanceComparisonImage[gY:gY + tSize, gX:gX + tSize, :]
print(tile.shape)
descriptor = np.ravel(tile) # find descriptor region in guidance image
if(len(descriptor) < tSize * tSize * tile.shape[2]): #verify descriptor size
continue
indices, distances = self.annNbrs.knn_query(descriptor, N)
candidates = np.squeeze(self.latentLookup[indices]) #get N best matches for descriptor region
candidateClusters = np.squeeze(self.clusterLookup[indices])
intermediateCandidates = self.calculateIntermediateLatents(candidates)
#put candidate tiles into latent field and pass through second generator / check if possibly only descriptor region should be replaced
candidateOutputs = []
candidateDistances = []
candidateGrid = np.copy(self.intermLatentGrid)
print('calculating candidate outputs...')
maxDiff = outputW * outputH * 3 * 64
for n in range(N):
intermLatent = intermediateCandidates[n]
candidateGrid[:, :, y:y + w, x:x + w] = intermLatent[:, pad:pad + w, pad:pad + w]
candidateOutput = self.calculateOutputImage(candidateGrid, start=(0, 0), end=(0, 0), updateAll=True)
candidateOutputs.append(candidateOutput)
if self.guidanceImage is not None: #E_m calculation only for guidance images
distance = np.linalg.norm(candidateOutput - outputComparisonImage) / maxDiff
candidateDistances.append(distance)
print('calculated candidate distances: ', candidateDistances)
# find N top candidates using E_m
sortedByDistance = np.argsort(candidateDistances)
bestCandidateIndices = sortedByDistance[:M]
print('best candidate indices: ', bestCandidateIndices)
bestCandidates = candidates[bestCandidateIndices]
E_ms = np.array(candidateDistances)[bestCandidateIndices]
else:
bestCandidates = candidates[:M]
E_ms = np.zeros(M)
E_ns = []
#calculate dissimilarity terms for each candidate
for c, candidate in enumerate(bestCandidates):
distances_v = 0
distances_l = 0
distance_c = 0
#### D_v ####
if lambda_v > 0:
#get neighbors in 4-neighborhood, calculating dissimilarity of edge region
neighborDescriptors = []
neighborDescriptors.append(guidanceComparisonImage[gY - gSize:gY - gSize + tSize, gX:gX + tSize, :]) # TOP
neighborDescriptors.append(guidanceComparisonImage[gY + gSize:gY + gSize + tSize, gX:gX + tSize, :]) # BOTTOM
neighborDescriptors.append(guidanceComparisonImage[gY:gY + tSize, gX - gSize:gX - gSize + tSize, :]) # LEFT
neighborDescriptors.append(guidanceComparisonImage[gY:gY + tSize, gX - gSize:gX + gSize + tSize, :]) # RIGHT
candidateOutput = candidateOutputs[c]
#resize output to guidance image size
candidatePIL = Image.fromarray(np.rollaxis(candidateOutput, 0, 3))
candidatePIL = candidatePIL.resize((guidanceComparisonImage.shape[1], guidanceComparisonImage.shape[0]))
candidateComparisonImage = np.array(candidatePIL)
candidateDescriptors = []
candidateDescriptors.append(candidateComparisonImage[gY - gSize:gY - gSize + tSize, gX:gX + tSize, :]) # TOP
candidateDescriptors.append(candidateComparisonImage[gY + gSize:gY + gSize + tSize, gX:gX + tSize, :]) # BOTTOM
candidateDescriptors.append(candidateComparisonImage[gY:gY + tSize, gX - gSize:gX - gSize + tSize, :]) # LEFT
candidateDescriptors.append(candidateComparisonImage[gY:gY + tSize, gX - gSize:gX + gSize + tSize, :]) # RIGHT
maxDiff = tSize * tilesY * tSize * tilesX * 3 * 64 #fix range to normalize to and clamp to range
#calculate distances for all 4 neighbors
distances_v = [ np.linalg.norm(neighborDescriptors[i] - candidateDescriptors[i]) for i in range(4) ]
distances_v = np.array(distances_v) / maxDiff
print('distances_v: ', distances_v)
#### D_l ####
if lambda_l > 0:
latentEdges = []
latentEdges.append(self.intermLatentGrid[:, :, y - w, x:x + w].flatten()) # TOP
latentEdges.append(self.intermLatentGrid[:, :, y + w, x:x + w].flatten()) # BOTTOM
latentEdges.append(self.intermLatentGrid[:, :, y:y + w, x - w].flatten()) # LEFT
latentEdges.append(self.intermLatentGrid[:, :, y:y + w, x + w].flatten()) # RIGHT
intermLatent = intermediateCandidates[c]
candidateEdges = []
candidateEdges.append(intermLatent[:, pad - 1, pad:pad + w].flatten()) # TOP
candidateEdges.append(intermLatent[:, pad + w, pad:pad + w].flatten()) # BOTTOM
candidateEdges.append(intermLatent[:, pad:pad + w, pad - 1].flatten()) # LEFT
candidateEdges.append(intermLatent[:, pad:pad + w, pad + w].flatten()) # RIGHT
maxDiff = len(latentEdges[0]) * 0.5 #fix range to normalize to and clamp to range
# calculate distances for all 4 neighbors
distances_l = [np.linalg.norm(latentEdges[i] - candidateEdges[i]) for i in range(4)]
distances_l = np.array(distances_l) / maxDiff
print('distances_l: ', distances_l)
#### D_c ####
if lambda_c > 0:
adjacentClusters = self.getAdjacentClusters(y, x)
candidateCluster = candidateClusters[c]
numSame = np.count_nonzero(adjacentClusters == candidateCluster)
distance_c = 1.0 - float(numSame / len(adjacentClusters))
print('distance_c: ', distance_c)
D_v = lambda_v * sum(distances_v) #visual dissimilarity
D_l = lambda_l * sum(distances_l) #latent dissimilarity
D_c = lambda_c * distance_c #cluster membership
E_n = D_v + D_l + D_c
E_ns.append(E_n)
print('E_ms: ', E_ms)
print('E_ns: ', E_ns)
totalEnergies = E_ms + E_ns
#pick candidate with minimal energy
sortedByEnergy = np.argsort(totalEnergies)
selectedIdx = sortedByEnergy[0]
if totalEnergies[selectedIdx] < totalEnergy: #only pick tile if energy goes down
totalEnergy = totalEnergies[selectedIdx]
print('totalEnergy: ', totalEnergy)
intermLatent = intermediateCandidates[selectedIdx]
candidateGrid[:, :, y : y + w, x : x + w] = intermLatent[:, pad:pad + w, pad:pad + w]
self.intermLatentGrid = candidateGrid
self.output = candidateOutputs[selectedIdx]
t2 = time.time()
print('improving latents {:10.2f}s '.format(t2 - t1))
return self.output
def getUpsampled(self, image):
"""
get a tile-per-tile arrangement of latent based on similarity to a guidance image
"""
t1 = time.time()
tSize = self.tSize
latentSize = self.latentSize
#if necessary, remove alpha channel
if image.shape[2] > 3:
image = image[:, :, :3]
imgH = image.shape[0]
imgW = image.shape[1]
print('input image shape: {}'.format(image.shape))
channels = 3 if len(image.shape) > 2 else 1
descSize = tSize * tSize * channels
totalPad = (2 ** self.mergeLevel) - latentSize
totalImgPad = totalPad * (tSize // (2 ** self.mergeLevel))
gSize = tSize - totalImgPad
#extract width and height of tiling
self.height = (imgH - totalImgPad) // gSize
self.width = (imgW - totalImgPad) // gSize
print('number of tiles: ({}x{})'.format(self.height, self.width))
self.guidanceImage = image[:self.height*gSize, :self.width*gSize, :]
tileDescriptors = np.zeros((self.height * self.width, descSize))
self.clusterGrid = np.zeros((self.height * self.latentSize, self.width * self.latentSize), dtype=np.uint8)
for y in range(self.height):
for x in range(self.width):
tile = image[y * gSize:y * gSize + tSize, x * gSize:x * gSize + tSize, :]
tileDescriptors[y * self.width + x, :] = np.ravel(tile)
spinner = Spinner()
spinner.start()
num_options = 3
print('finding nearest neighbors for {} descriptors of length {}'.format(tileDescriptors.shape[0], tileDescriptors.shape[1]))
# extract indices of nearest neighbor
if self.useANN: # use ANN
all_indices, all_distances = self.annNbrs.knn_query(tileDescriptors, num_options)
else: # use KNN
#all_distances, all_indices = nnNbrs.kneighbors(tileDescriptors)
pass
print('predicting clusters')
spinner.stop()
print('generating latent list')
latentList = []
for i in range(self.height * self.width): #! currently picking random latent
indices = all_indices[i, :]
randomIdx = np.random.randint(len(indices))
index = int(indices[randomIdx])
latentList.append(self.latentLookup[index])
y = i // self.width
x = i % self.width
self.clusterGrid[y*self.latentSize:(y+1)*self.latentSize, x*self.latentSize:(x+1)*self.latentSize] = int(self.clusterLookup[index])
self.latentList = np.asarray(latentList)
t2 = time.time()
outputImage = self.getOutputFromLatents(self.latentList)
gridH = self.height * latentSize
gridW = self.width * latentSize
t3 = time.time()
print('processing nearest neighbors {:10.2f}s | processing grid {:10.4f}s'.format(t2 - t1, t3 - t2))
saveImageOnServer=False
if saveImageOnServer:
import pyvips
saveArray = np.copy(outputImage)
if saveArray.shape[0] == 3:
saveArray = np.rollaxis(saveArray, 0, 3)
height, width, bands = saveArray.shape
linear = saveArray.reshape(width * height * bands)
vi = pyvips.Image.new_from_memory(linear, width, height, bands, 'uchar')
vi.write_to_file('output.jpg')
return outputImage, None, (gridH, gridW, latentSize, self.mergeLevel), self.undoCount
def pasteLatents(self, sampleLatent, targetX, targetY, targetW, targetH, sourceX, sourceY, mode='identical'):
"""
cloning sample latent to larger region in the texture
"""
latentSize = self.latentSize
pad = self.getLeftPadding()
t1 = time.time()
gridH = self.intermLatentGrid.shape[2]
gridW = self.intermLatentGrid.shape[3]
centerOffset = latentSize // 2
print('target at [{}, {}], region size: ({}x{})'.format(targetX, targetY, targetW, targetH))
#default: use source latent from latent grid - override this if mode is not 'identical'
sourceX = min(max(centerOffset, sourceX), gridW - (latentSize - centerOffset)) # constrain sourceX to grid dims
sourceY = min(max(centerOffset, sourceY), gridH - (latentSize - centerOffset)) # constrain sourceY to grid dims
sourceLatent = self.intermLatentGrid[:, :, sourceY - centerOffset:sourceY - centerOffset + latentSize, sourceX - centerOffset:sourceX - centerOffset + latentSize]
numSimilar = 5
#override which latent is used
if mode == 'similar':
pilImg = Image.fromarray(sampleLatent)
pilImg.thumbnail((self.tSize, self.tSize))
sourceDescriptor = np.asarray(pilImg)
if self.useANN: # use ANN
indices, distances = self.annNbrs.knn_query(np.ravel(sourceDescriptor).reshape(1, -1), numSimilar)
else: # use KNN
distances, indices = self.nnNbrs.kneighbors(np.ravel(sourceDescriptor).reshape(1, -1))
nearestLatents = self.latentLookup[indices]
similarLatents = self.calculateIntermediateLatents(np.squeeze(nearestLatents))
print('nearestLatents size: {}'.format(similarLatents.shape))
elif mode == 'cluster':
clusterIndex = self.clusterGrid[sourceY, sourceX]
cluster = self.latentClusters[clusterIndex]
cdf = self.latentCDFs[clusterIndex]
print('cluster mode, using cluster {}'.format(clusterIndex))
for xPos in range(0, targetW, latentSize):
for yPos in range(0, targetH, latentSize):
x_start = targetX + xPos
y_start = targetY + yPos
x_end = min(x_start + latentSize, targetX+targetW)
y_end = min(y_start + latentSize, targetY+targetH)
if mode == 'similar':
# pick random latent from similar and decrust
randomIdx = np.random.randint(numSimilar)
sourceLatent = similarLatents[randomIdx:randomIdx+1, :, pad:pad+latentSize, pad:pad+latentSize]
elif mode =='cluster':
randomIdx = bisect(cdf, np.random.random())
# pick random latent from similar and decrust
sameClusterLatent = self.latentLookup[cluster[randomIdx]]
intermLatent = self.calculateIntermediateLatents(sameClusterLatent)
sourceLatent = intermLatent[:, :, pad:pad + latentSize, pad:pad + latentSize]
self.clusterGrid[y_start:y_end, x_start:x_end] = clusterIndex
# define whether latent is at canvas edge and needs to be cropped on right or bottom
r = max((targetX+targetW), x_start + latentSize) - (targetX+targetW) #! simplify
b = max((targetY+targetH), y_start + latentSize) - (targetY+targetH)
print('y: [{}, {}], x: [{}, {}], cutRB: [{}, {}]'.format(y_start, y_end, x_start, x_end, r, b))
self.intermLatentGrid[:, :, y_start:y_end, x_start:x_end] = sourceLatent[:, :, :latentSize - b, :latentSize - r]
roi = 2 * latentSize
outputImage = self.calculateOutputImage(self.intermLatentGrid, start=(max(targetY - roi, 0), max(targetX - roi, 0)), end=(min(targetY + targetH + 2 * roi, gridH), min(targetX + targetW + 2 * roi, gridW)), updateAll=False)
t2 = time.time()
print('pasting latent {:10.2f}s'.format(t2 - t1))
return outputImage, self.undoCount
def saveLatents(self):
"""
saving latents to file - ! load latents from file
"""
from pathlib import Path
string = 'savelatents'
gridH = self.intermLatentGrid.shape[2]
gridW = self.intermLatentGrid.shape[3]
timestr = time.strftime("%m_%d_%H%M")
np.save(str(Path.home()) +'\Desktop\{}_{}x{}latents_{}.npy'.format(string, gridH, gridW, timestr), self.intermLatentGrid)
def initLatentList(self, h, w, repeat=False):
"""
initialize the latent grid with a grid of random latent vectors
"""
self.height = h
self.width = w
self.clusterGrid = np.zeros((self.height*self.latentSize, self.width*self.latentSize), dtype=np.uint8)
if repeat:
randomIdx = np.random.randint(len(self.latentLookup))
latent = self.latentLookup[randomIdx]
cluster = self.clusterLookup[randomIdx]
latentList = np.tile(latent, (self.height * self.width))
self.clusterGrid = np.tile(cluster, (self.height*self.latentSize, self.width*self.latentSize))
else:
randomIdxs = np.random.randint(len(self.latentLookup), size=self.height * self.width)
latentList = np.asarray([ self.latentLookup[randomIdx] for randomIdx in randomIdxs ])
clusters = np.asarray([ self.clusterLookup[randomIdx] for randomIdx in randomIdxs ])
for x in np.arange(self.width):
for y in np.arange(self.height):
self.clusterGrid[y*self.latentSize:(y+1)*self.latentSize, x*self.latentSize:(x+1)*self.latentSize] = clusters[y*w+x]
print('initialized latent list of size: ', latentList.shape)
return latentList
def calculateIntermediateLatents(self, latents):
"""
process input latent vectors in {latents} using networkA and return intermediate latent vectors
"""
if len(latents.shape) == 1:
latents = np.expand_dims(latents, axis=0)
if len(latents.shape) > 2:
latents = np.squeeze(latents)
with self.graphA.as_default():
with self.sessionA.as_default():
intermediateLatents, _ = self.GsA.run(latents, in_res=2, out_res=self.mergeLevel, latent_depth=DEPTHS[0], minibatch_size=32, num_gpus=1, out_dtype=np.float32)
return intermediateLatents
def getOutputFromLatents(self, latentList, updateUndoStack=True):
"""
return the merged output based on the specified latent list
"""
if self.undoStack is None or self.undoStack.shape[1] != len(latentList):
print('initialize undo stack...')
self.initUndoStack()
if updateUndoStack:
self.putOnUndoStack(self.latentList)
intermLatents = self.calculateIntermediateLatents(latentList)
#! make decrusting (more) flexible
latentSize = self.latentSize
pad = self.getLeftPadding()
self.intermLatentGrid = np.zeros((1, self.latentDepth, self.height * latentSize, self.width * latentSize))
print('intermLatentGrid has shape', self.intermLatentGrid.shape)
for y in range(self.height):
for x in range(self.width):
self.intermLatentGrid[:, :, y * latentSize:(y + 1) * latentSize, x * latentSize:(x + 1) * latentSize] = intermLatents[y * self.width + x, :, pad:pad+latentSize, pad:pad+latentSize]
return self.calculateOutputImage(self.intermLatentGrid, updateAll=True)
def initUndoStack(self):
self.undoStack = np.zeros((self.undoDepth, self.height * self.width, 512))
self.undoCount = 0
def perturbLatent(self, posX, posY, sourceX, sourceY, alpha, randomLatent=False, fromSamples=False, useCDF=True):
"""
add latent in small quantities to current position in order to morph from one latent to another
"""
t1 = time.time()
latentSize = self.latentSize
pad = self.getLeftPadding()
gridH = self.intermLatentGrid.shape[2]
gridW = self.intermLatentGrid.shape[3]
centerOffset = latentSize // 2
sourceX = min(max(centerOffset, sourceX), gridW - (latentSize - centerOffset)) # constrain sourceX to grid dims
sourceY = min(max(centerOffset, sourceY), gridH - (latentSize - centerOffset)) # constrain sourceY to grid dims
intermLatent = self.intermLatentGrid[:, :, sourceY - centerOffset:sourceY - centerOffset + latentSize, sourceX - centerOffset:sourceX - centerOffset + latentSize]
if randomLatent:
clusterIndex = 0 #! random cluster no longer available
if fromSamples and self.clusterSamples is not None:
latent = self.clusterSamples[clusterIndex]
else:
cluster = self.latentClusters[clusterIndex]
if useCDF:
cdf = self.latentCDFs[clusterIndex]
randomIdx = bisect(cdf, np.random.random())
else:
randomIdx = np.random.randint(len(cluster))
randLatentIdx = cluster[randomIdx]
latent = self.latentLookup[randLatentIdx]
t2 = time.time()
randIntermLatent = self.calculateIntermediateLatents(latent)
# decrust random latent
intermLatent = randIntermLatent[:, :, pad:pad + latentSize, pad:pad + latentSize]
# get top left and bottom right from posX/Y (at center of click)
x_start = max(posX - centerOffset, 0)
y_start = max(posY - centerOffset, 0)
x_end = min(posX - centerOffset + latentSize, gridW) # weird workaround for odd latent sizes
y_end = min(posY - centerOffset + latentSize, gridH)
# define whether latent is at canvas edge and needs to be cropped on left, top, right, or bottom
l = abs(min(0, posX - centerOffset))
t = abs(min(0, posY - centerOffset))
r = max(gridW, posX - centerOffset + latentSize) - gridW # weird workaround for odd latent sizes
b = max(gridH, posY - centerOffset + latentSize) - gridH
assert not r < 0 and not b < 0
self.intermLatentGrid[:, :, y_start:y_end, x_start:x_end] = (1-alpha) * self.intermLatentGrid[:, :, y_start:y_end, x_start:x_end] + alpha*intermLatent[:, :, t:latentSize - b, l:latentSize - r]
roi = 2 * latentSize
returnImage = self.calculateOutputImage(self.intermLatentGrid, start=(max(y_start - roi, 0), max(x_start - roi, 0)), end=(min(y_end + 2 * roi, gridH), min(x_end + 2 * roi, gridW)), updateAll=False)
t3 = time.time()
return returnImage, self.undoCount
def putLatent(self, posX, posY, clusterIndex, fromSamples=False, useCDF=True, updateUndoStack=True):
"""
put a new latent of class {latent_class} at position {x_in}, {y_in} in the intermLatentGrid
"""
t1 = time.time()
latentSize = self.latentSize
pad = self.getLeftPadding()
gridH = self.intermLatentGrid.shape[2]
gridW = self.intermLatentGrid.shape[3]
centerOffset = latentSize // 2
# get top left and bottom right from posX/Y (at center of click)
x_start = max(posX - centerOffset, 0)
y_start = max(posY - centerOffset, 0)
x_end = min(posX - centerOffset + latentSize, gridW) # weird workaround for odd latent sizes
y_end = min(posY - centerOffset + latentSize, gridH)
# define whether latent is at canvas edge and needs to be cropped on left, top, right, or bottom
l = abs(min(0, posX - centerOffset))
t = abs(min(0, posY - centerOffset))
r = max(gridW, posX - centerOffset + latentSize) - gridW # weird workaround for odd latent sizes
b = max(gridH, posY - centerOffset + latentSize) - gridH
assert not r < 0 and not b < 0
if fromSamples and self.clusterSamples is not None:
randLatent = self.clusterSamples[clusterIndex]
self.clusterGrid[y_start:y_end, x_start:x_end] = clusterIndex
else:
cluster = self.latentClusters[clusterIndex]
if useCDF:
cdf = self.latentCDFs[clusterIndex]
randIdx = bisect(cdf, np.random.random())
else:
randIdx = np.random.randint(len(cluster))
randLatentIdx = cluster[randIdx]
randLatent = self.latentLookup[randLatentIdx]
self.clusterGrid[y_start:y_end, x_start:x_end] = self.clusterLookup[randLatentIdx]
t2 = time.time()
randIntermLatent = self.calculateIntermediateLatents(randLatent)
#decrust random latent
randIntermLatent = randIntermLatent[:, :, pad:pad+latentSize, pad:pad+latentSize]
if self.latentList is not None:
self.latentList[(y_start//latentSize)*self.width+(x_start//latentSize)] = randLatent
if updateUndoStack:
self.putOnUndoStack(self.latentList)
self.intermLatentGrid[:, :, y_start:y_end, x_start:x_end] = randIntermLatent[:, :, t:latentSize-b, l:latentSize-r]
roi = 2 * latentSize
returnImage = self.calculateOutputImage(self.intermLatentGrid, start=(max(y_start - roi, 0), max(x_start - roi, 0)), end=(min(y_end + 2 * roi, gridH), min(x_end + 2 * roi, gridW)), updateAll=False)
t3 = time.time()
return returnImage, self.undoCount
def undo(self):
"""
undo the latest 'put latent' operation by pulling the previous status of intermLatentGrid from undoStack. This is currently a bit unsatisfactory as we cannot undo all kinds of latent operations.
"""
print('undoing last change...')
self.latentList = self.undoStack[-2]
self.undoStack = np.concatenate((self.undoStack[0:1], self.undoStack[:-1]), axis=0)
undoCount = max(0, self.undoCount - 1)
return self.getOutputFromLatents(self.latentList, updateUndoStack=False), undoCount
def putOnUndoStack(self, latentList):
self.undoStack = np.concatenate((self.undoStack[1:], np.expand_dims(latentList, axis=0)), axis=0)
self.undoCount = min(self.undoCount + 1, self.undoDepth)
def calculateUnmergedOutputImage(self, intermLatentGrid, mergeSize=0):
"""
calculate the output image from the grid of latents in {intermLatentGrid}
"""
if mergeSize == 0:
mergeSize = self.latentSize
gridH = (self.height * self.latentSize) // mergeSize
gridW = (self.width * self.latentSize) // mergeSize
#compile intermediate latents as list instead of grid
intermLatentsList = np.zeros((gridH*gridW, self.latentDepth, mergeSize, mergeSize)) #it's necessary to recalculate latentsList here because user may have dropped latent in overlapping region
s = list(intermLatentsList.shape)
for y in np.arange(gridH):
for x in np.arange(gridW):
intermLatentsList[y*gridW+x, :, :, :] = intermLatentGrid[:, :, y*mergeSize:(y+1)*mergeSize, x*mergeSize:(x+1)*mergeSize]
#feed list of intermediate latents through second network
with self.graphC.as_default():
with self.sessionC.as_default():
if [s[1], mergeSize, mergeSize] != self.GsC.input_shape[1:]: # only update if input shape changed
self.GsC.update_latent_size(mergeSize, mergeSize)
_, outputs = self.GsC.run(intermLatentsList, in_res=self.mergeLevel + 1, out_res=self.outRes, latent_size=[None, s[1], mergeSize, mergeSize], latent_depth=s[1], minibatch_size=32, num_gpus=1, out_mul=127.5, out_add=127.5, out_dtype=np.uint8)
outSize = outputs.shape[2]
output = np.zeros((3, outSize*gridH, outSize*gridW), np.uint8)
#merge outputs into grid shape
for y in range(gridH):
for x in range(gridW):
output[:, y * outSize:(y + 1) * outSize, x * outSize:(x + 1) * outSize] = outputs[y * gridW + x]
return np.squeeze(output)
def calculateOutputImage(self, intermLatentGrid, start=(0, 0), end=(0, 0), updateAll=False):
"""
calculate the output image from the grid of latents in {intermLatentGrid}
"""
s = list(intermLatentGrid.shape)
gridH = s[2]
gridW = s[3]