-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
152 lines (127 loc) · 4.03 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include "rtweekend.hpp"
#include "hittable_list.hpp"
#include "sphere.hpp"
#include "camera.hpp"
#include <vector>
#include <iostream>
using namespace std;
hittable_list random_scene()
{
hittable_list world;
world.add(make_shared<sphere>(point3(0, -1000, 0), 1000, make_shared<lambertian>(color(0.5, 0.5, 0.5))));
int i = 1;
for (int a = -11; a < 11; a++)
{
for (int b = -11; b < 11; b++)
{
auto choose_mat = random_double();
point3 center(a + 0.9 * random_double(), 0.2, b + 0.9 * random_double());
if ((center - vec3(4, 0.2, 0)).length() > 0.9)
{
if (choose_mat < 0.8)
{
// diffuse
auto albedo = color::random() * color::random();
world.add(
make_shared<sphere>(center, 0.2, make_shared<lambertian>(albedo)));
}
else if (choose_mat < 0.95)
{
// metal
auto albedo = color::random(.5, 1);
auto fuzz = random_double(0, .5);
world.add(
make_shared<sphere>(center, 0.2, make_shared<metal>(albedo, fuzz)));
}
else
{
// glass
world.add(make_shared<sphere>(center, 0.2, make_shared<dielectric>(1.5)));
}
}
}
}
world.add(make_shared<sphere>(point3(0, 1, 0), 1.0, make_shared<dielectric>(1.5)));
world.add(make_shared<sphere>(point3(-4, 1, 0), 1.0, make_shared<lambertian>(color(.4, .2, .1))));
world.add(make_shared<sphere>(point3(4, 1, 0), 1.0, make_shared<metal>(color(.7, .6, .5), 0.0)));
return world;
}
double hit_sphere(const point3 ¢er, double radius, const ray &r)
{
/**
* See section "Adding a Sphere"
*/
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared();
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius * radius;
auto discriminant = half_b * half_b - a * c;
if (discriminant < 0)
{
return -1.0;
}
else
{
return (-half_b - sqrt(discriminant)) / a;
}
}
color ray_color(const ray &r, const hittable &world, int depth)
{
hit_record rec;
// If we've exceeded the ray bounce limit, no more light is gathered.
if (depth <= 0)
return color(0, 0, 0);
if (world.hit(r, 0.001, infinity, rec))
{
ray scattered;
color attenuation;
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
return attenuation * ray_color(scattered, world, depth - 1);
return color(0, 0, 0);
}
vec3 unit_direction = unit_vector(r.direction());
auto t = 0.5 * (unit_direction.y() + 1.0);
/**
* I then did a standard graphics trick of scaling that to 0.0≤t≤1.0. When t=1.0 I want blue. When t=0.0
* I want white. In between, I want a blend. This forms a “linear blend”, or “linear interpolation”, or “lerp” for short, between two things.
* A lerp is always of the form:
*
* blendedValue=(1−t)⋅startValue+t⋅endValue,
*/
return (1.0 - t) * color(1.0, 1.0, 1.0) + t * color(0.5, 0.7, 1.0);
}
int main()
{
const auto aspect_ratio = 16.0 / 9.0;
const int image_width = 384;
const int image_height = static_cast<int>(image_width / aspect_ratio);
const int samples_per_pixel = 100;
const int max_depth = 50;
cout << "P3\n"
<< image_width << ' ' << image_height << "\n255\n";
auto world = random_scene();
point3 lookfrom(13, 2, 3);
point3 lookat(0, 0, 0);
vec3 vup(0, 1, 0);
auto dist_to_focus = 10.0;
auto aperture = 0.1;
camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus);
for (int j = image_height - 1; j >= 0; --j)
{
cerr << "\nScanlines remaining: " << j << ' ' << flush;
for (int i = 0; i < image_width; ++i)
{
color pixel_color(0, 0, 0);
for (int s = 0; s < samples_per_pixel; ++s)
{
auto u = (i + random_double()) / (image_width - 1);
auto v = (j + random_double()) / (image_height - 1);
ray r = cam.get_ray(u, v);
pixel_color += ray_color(r, world, max_depth);
}
write_color(cout, pixel_color, samples_per_pixel);
}
}
cerr << "\nDone.\n";
return 0;
}