This repository has been archived by the owner on Dec 26, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathmnistcnn.py
59 lines (48 loc) · 2.47 KB
/
mnistcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import tensorflow as tf
import numpy as numpy
from parameterservermodel import ParameterServerModel
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
class MnistCNN(ParameterServerModel):
def __init__(self):
session = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784], name='x')
x_image = tf.reshape(x, [-1,28,28,1], name='reshape')
y_ = tf.placeholder("float", shape=[None, 10], name='y_')
W_conv1 = weight_variable([5, 5, 1, 32], 'W_conv1')
b_conv1 = bias_variable([32], 'b_conv1')
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64], 'W_conv2')
b_conv2 = bias_variable([64], 'b_conv2')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024], 'W_fc1')
b_fc1 = bias_variable([1024], 'b_fc1')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.Variable(0.5, name='keep_prob', trainable=False)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10], 'W_fc2')
b_fc2 = bias_variable([10], 'b_fc2')
# not using dropout for testing, only training
y_conv_dropout = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
y_conv = tf.matmul(h_fc1, W_fc2) + b_fc2
variables = [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
loss = tf.nn.softmax_cross_entropy_with_logits(y_conv_dropout, y_)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
compute_gradients = optimizer.compute_gradients(loss, variables)
apply_gradients = optimizer.apply_gradients(compute_gradients)
minimize = optimizer.minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
ParameterServerModel.__init__(self, x, y_, compute_gradients, apply_gradients, minimize, accuracy, session)