-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfizzbuzz.py
89 lines (67 loc) · 2.43 KB
/
fizzbuzz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from keras.models import Sequential
from keras.layers import Dense,Activation,Dropout
from keras.optimizers import RMSprop
from keras.utils import np_utils
from keras.callbacks import Callback,EarlyStopping
import numpy
num_digits = 10 # binary encode numbers
nb_classes = 4 # 4 classes : number/fizz/buzz/fizzbuzz
batch_size = 128
def fb_encode(i):
if i % 15 == 0: return [3]
elif i % 5 == 0: return [2]
elif i % 3 == 0: return [1]
else: return [0]
def bin_encode(i):
return [i >> d & 1 for d in range(num_digits)]
def fizz_buzz_pred(i, pred):
return [str(i), "fizz", "buzz", "fizzbuzz"][pred.argmax()]
def fizz_buzz(i):
if i % 15 == 0: return "fizzbuzz"
elif i % 5 == 0: return "buzz"
elif i % 3 == 0: return "fizz"
else: return str(i)
def create_dataset():
dataX,dataY = [],[]
for i in range(101,1024):
dataX.append(bin_encode(i))
dataY.append(fb_encode(i))
return numpy.array(dataX),np_utils.to_categorical(numpy.array(dataY), nb_classes)
dataX,dataY = create_dataset()
class EarlyStopping(Callback):
def __init__(self, monitor='accuracy', value=1.0, verbose=0):
super(Callback, self).__init__()
self.monitor = monitor
self.value = value
self.verbose = verbose
def on_epoch_end(self, epoch, logs={}):
current = logs.get(self.monitor)
if current is None:
print ("Early stopping requires %s available!" % self.monitor, RuntimeWarning)
if current < self.value:
if self.verbose > 0:
print("Epoch %05d: early stopping THR" % epoch)
self.model.stop_training = True
model = Sequential()
model.add(Dense(64, input_shape=(num_digits,)))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(4))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer=RMSprop())
callbacks = [EarlyStopping(monitor='loss',value=1.2e-07,verbose=1)]
model.fit(dataX,dataY,nb_epoch=10000,batch_size=batch_size)#,callbacks=callbacks)
errors = 0
correct = 0
for i in range(1,101):
x = bin_encode(i)
y = model.predict(numpy.array(x).reshape(-1,10))
print fizz_buzz_pred(i,y)
if fizz_buzz_pred(i,y) == fizz_buzz(i):
correct = correct + 1
else:
errors = errors + 1
print "Errors :" , errors, " Correct :", correct