-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_conv_gru.py
641 lines (584 loc) · 24.3 KB
/
base_conv_gru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for N-D convolutional LSTM layers."""
import tensorflow.compat.v2 as tf
from keras.src import activations
from keras.src import backend
from keras.src import constraints
from keras.src import initializers
from keras.src import regularizers
from keras.src.engine import base_layer
from keras.src.layers.rnn.base_conv_rnn import ConvRNN
from keras.src.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin
from keras.src.utils import conv_utils
class ConvGRUCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
"""Cell class for the ConvGRU layer.
Args:
rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions.
filters: Integer, the dimensionality of the output space (i.e. the number
of output filters in the convolution).
kernel_size: An integer or tuple/list of n integers, specifying the
dimensions of the convolution window.
strides: An integer or tuple/list of n integers, specifying the strides of
the convolution. Specifying any stride value != 1 is incompatible with
specifying any `dilation_rate` value != 1.
padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means
no padding. `"same"` results in padding evenly to the left/right or
up/down of the input such that output has the same height/width
dimension as the input.
data_format: A string, one of `channels_last` (default) or
`channels_first`. When unspecified, uses
`image_data_format` value found in your Keras config file at
`~/.keras/keras.json` (if exists) else 'channels_last'.
Defaults to 'channels_last'.
dilation_rate: An integer or tuple/list of n integers, specifying the
dilation rate to use for dilated convolution. Currently, specifying any
`dilation_rate` value != 1 is incompatible with specifying any `strides`
value != 1.
activation: Activation function to use. If you don't specify anything, no
activation is applied
(ie. "linear" activation: `a(x) = x`).
recurrent_activation: Activation function to use for the recurrent step.
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix, used for
the linear transformation of the inputs.
recurrent_initializer: Initializer for the `recurrent_kernel` weights
matrix, used for the linear transformation of the recurrent state.
bias_initializer: Initializer for the bias vector.
unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate
at initialization. Use in combination with `bias_initializer="zeros"`.
This is recommended in [Jozefowicz et al., 2015](
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
kernel_regularizer: Regularizer function applied to the `kernel` weights
matrix.
recurrent_regularizer: Regularizer function applied to the
`recurrent_kernel` weights matrix.
bias_regularizer: Regularizer function applied to the bias vector.
kernel_constraint: Constraint function applied to the `kernel` weights
matrix.
recurrent_constraint: Constraint function applied to the
`recurrent_kernel` weights matrix.
bias_constraint: Constraint function applied to the bias vector.
dropout: Float between 0 and 1. Fraction of the units to drop for the
linear transformation of the inputs.
recurrent_dropout: Float between 0 and 1. Fraction of the units to drop
for the linear transformation of the recurrent state.
Call arguments:
inputs: A (2+ `rank`)D tensor.
states: List of state tensors corresponding to the previous timestep.
training: Python boolean indicating whether the layer should behave in
training mode or in inference mode. Only relevant when `dropout` or
`recurrent_dropout` is used.
"""
def __init__(
self,
rank,
filters,
kernel_size,
strides=1,
padding="valid",
data_format=None,
dilation_rate=1,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
reset_after=True,
**kwargs,
):
super().__init__(**kwargs)
self.rank = rank
if self.rank > 3:
raise ValueError(
f"Rank {rank} convolutions are not currently "
f"implemented. Received: rank={rank}"
)
self.filters = filters
self.kernel_size = conv_utils.normalize_tuple(
kernel_size, self.rank, "kernel_size"
)
self.strides = conv_utils.normalize_tuple(
strides, self.rank, "strides", allow_zero=True
)
self.padding = conv_utils.normalize_padding(padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.dilation_rate = conv_utils.normalize_tuple(
dilation_rate, self.rank, "dilation_rate"
)
self.activation = activations.get(activation)
self.recurrent_activation = activations.get(recurrent_activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(recurrent_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.dropout = min(1.0, max(0.0, dropout))
self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout))
self.state_size = (self.filters, self.filters)
def build(self, input_shape):
super().build(input_shape)
if self.data_format == "channels_first":
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError(
"The channel dimension of the inputs (last axis) should be "
"defined. Found None. Full input shape received: "
f"input_shape={input_shape}"
)
input_dim = input_shape[channel_axis]
self.kernel_shape = self.kernel_size + (input_dim, self.filters * 4)
recurrent_kernel_shape = self.kernel_size + (
self.filters,
self.filters * 4,
)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
name="kernel",
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.recurrent_kernel = self.add_weight(
shape=recurrent_kernel_shape,
initializer=self.recurrent_initializer,
name="recurrent_kernel",
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint,
)
if self.use_bias:
if self.unit_forget_bias:
def bias_initializer(_, *args, **kwargs):
return backend.concatenate(
[
self.bias_initializer(
(self.filters,), *args, **kwargs
),
initializers.get("ones")(
(self.filters,), *args, **kwargs
),
self.bias_initializer(
(self.filters * 2,), *args, **kwargs
),
]
)
else:
bias_initializer = self.bias_initializer
self.bias = self.add_weight(
shape=(self.filters * 4,),
name="bias",
initializer=bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
)
else:
self.bias = None
self.built = True
def call(self, inputs, states, training=None):
h_tm1 = states[0] # previous memory state
c_tm1 = states[1] # previous carry state
# dropout matrices for input units
dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4)
# dropout matrices for recurrent units
rec_dp_mask = self.get_recurrent_dropout_mask_for_cell(
h_tm1, training, count=4
)
if 0 < self.dropout < 1.0:
inputs_i = inputs * dp_mask[0]
inputs_f = inputs * dp_mask[1]
inputs_c = inputs * dp_mask[2]
inputs_o = inputs * dp_mask[3]
else:
inputs_i = inputs
inputs_f = inputs
inputs_c = inputs
inputs_o = inputs
if 0 < self.recurrent_dropout < 1.0:
h_tm1_i = h_tm1 * rec_dp_mask[0]
h_tm1_f = h_tm1 * rec_dp_mask[1]
h_tm1_c = h_tm1 * rec_dp_mask[2]
h_tm1_o = h_tm1 * rec_dp_mask[3]
else:
h_tm1_i = h_tm1
h_tm1_f = h_tm1
h_tm1_c = h_tm1
h_tm1_o = h_tm1
(kernel_i, kernel_f, kernel_c, kernel_o) = tf.split(
self.kernel, 4, axis=self.rank + 1
)
(
recurrent_kernel_i,
recurrent_kernel_f,
recurrent_kernel_c,
recurrent_kernel_o,
) = tf.split(self.recurrent_kernel, 4, axis=self.rank + 1)
if self.use_bias:
bias_i, bias_f, bias_c, bias_o = tf.split(self.bias, 4)
else:
bias_i, bias_f, bias_c, bias_o = None, None, None, None
x_i = self.input_conv(inputs_i, kernel_i, bias_i, padding=self.padding)
x_f = self.input_conv(inputs_f, kernel_f, bias_f, padding=self.padding)
x_c = self.input_conv(inputs_c, kernel_c, bias_c, padding=self.padding)
x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding)
h_i = self.recurrent_conv(h_tm1_i, recurrent_kernel_i)
h_f = self.recurrent_conv(h_tm1_f, recurrent_kernel_f)
h_c = self.recurrent_conv(h_tm1_c, recurrent_kernel_c)
h_o = self.recurrent_conv(h_tm1_o, recurrent_kernel_o)
i = self.recurrent_activation(x_i + h_i)
f = self.recurrent_activation(x_f + h_f)
c = f * c_tm1 + i * self.activation(x_c + h_c)
o = self.recurrent_activation(x_o + h_o)
h = o * self.activation(c)
return h, [h, c]
@property
def _conv_func(self):
if self.rank == 1:
return backend.conv1d
if self.rank == 2:
return backend.conv2d
if self.rank == 3:
return backend.conv3d
def input_conv(self, x, w, b=None, padding="valid"):
conv_out = self._conv_func(
x,
w,
strides=self.strides,
padding=padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate,
)
if b is not None:
conv_out = backend.bias_add(
conv_out, b, data_format=self.data_format
)
return conv_out
def recurrent_conv(self, x, w):
strides = conv_utils.normalize_tuple(
1, self.rank, "strides", allow_zero=True
)
conv_out = self._conv_func(
x, w, strides=strides, padding="same", data_format=self.data_format
)
return conv_out
def get_config(self):
config = {
"filters": self.filters,
"kernel_size": self.kernel_size,
"strides": self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate,
"activation": activations.serialize(self.activation),
"recurrent_activation": activations.serialize(
self.recurrent_activation
),
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(
self.kernel_initializer
),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer
),
"bias_initializer": initializers.serialize(self.bias_initializer),
"unit_forget_bias": self.unit_forget_bias,
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer
),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer
),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint
),
"bias_constraint": constraints.serialize(self.bias_constraint),
"dropout": self.dropout,
"recurrent_dropout": self.recurrent_dropout,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class ConvGRU(ConvRNN):
"""Abstract N-D Convolutional LSTM layer (used as implementation base).
Similar to an LSTM layer, but the input transformations
and recurrent transformations are both convolutional.
Args:
rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions.
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of n integers, specifying the
dimensions of the convolution window.
strides: An integer or tuple/list of n integers,
specifying the strides of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: One of `"valid"` or `"same"` (case-insensitive).
`"valid"` means no padding. `"same"` results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, time, ..., channels)`
while `channels_first` corresponds to
inputs with shape `(batch, time, channels, ...)`.
When unspecified, uses
`image_data_format` value found in your Keras config file at
`~/.keras/keras.json` (if exists) else 'channels_last'.
Defaults to 'channels_last'.
dilation_rate: An integer or tuple/list of n integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any `dilation_rate` value != 1 is
incompatible with specifying any `strides` value != 1.
activation: Activation function to use.
By default hyperbolic tangent activation function is applied
(`tanh(x)`).
recurrent_activation: Activation function to use
for the recurrent step.
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs.
recurrent_initializer: Initializer for the `recurrent_kernel`
weights matrix,
used for the linear transformation of the recurrent state.
bias_initializer: Initializer for the bias vector.
unit_forget_bias: Boolean.
If True, add 1 to the bias of the forget gate at initialization.
Use in combination with `bias_initializer="zeros"`.
This is recommended in [Jozefowicz et al., 2015](
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix.
recurrent_regularizer: Regularizer function applied to
the `recurrent_kernel` weights matrix.
bias_regularizer: Regularizer function applied to the bias vector.
activity_regularizer: Regularizer function applied to.
kernel_constraint: Constraint function applied to
the `kernel` weights matrix.
recurrent_constraint: Constraint function applied to
the `recurrent_kernel` weights matrix.
bias_constraint: Constraint function applied to the bias vector.
return_sequences: Boolean. Whether to return the last output
in the output sequence, or the full sequence. (default False)
return_state: Boolean Whether to return the last state
in addition to the output. (default False)
go_backwards: Boolean (default False).
If True, process the input sequence backwards.
stateful: Boolean (default False). If True, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
dropout: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the inputs.
recurrent_dropout: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the recurrent state.
"""
def __init__(
self,
rank,
filters,
kernel_size,
strides=1,
padding="valid",
data_format=None,
dilation_rate=1,
activation="tanh",
recurrent_activation="hard_sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
dropout=0.0,
recurrent_dropout=0.0,
**kwargs,
):
cell = ConvGRUCell(
rank=rank,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
recurrent_activation=recurrent_activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
recurrent_initializer=recurrent_initializer,
bias_initializer=bias_initializer,
unit_forget_bias=unit_forget_bias,
kernel_regularizer=kernel_regularizer,
recurrent_regularizer=recurrent_regularizer,
bias_regularizer=bias_regularizer,
kernel_constraint=kernel_constraint,
recurrent_constraint=recurrent_constraint,
bias_constraint=bias_constraint,
dropout=dropout,
recurrent_dropout=recurrent_dropout,
name="conv_gru_cell",
dtype=kwargs.get("dtype"),
)
super().__init__(
rank,
cell,
return_sequences=return_sequences,
return_state=return_state,
go_backwards=go_backwards,
stateful=stateful,
**kwargs,
)
self.activity_regularizer = regularizers.get(activity_regularizer)
def call(self, inputs, mask=None, training=None, initial_state=None):
return super().call(
inputs, mask=mask, training=training, initial_state=initial_state
)
@property
def filters(self):
return self.cell.filters
@property
def kernel_size(self):
return self.cell.kernel_size
@property
def strides(self):
return self.cell.strides
@property
def padding(self):
return self.cell.padding
@property
def data_format(self):
return self.cell.data_format
@property
def dilation_rate(self):
return self.cell.dilation_rate
@property
def activation(self):
return self.cell.activation
@property
def recurrent_activation(self):
return self.cell.recurrent_activation
@property
def use_bias(self):
return self.cell.use_bias
@property
def kernel_initializer(self):
return self.cell.kernel_initializer
@property
def recurrent_initializer(self):
return self.cell.recurrent_initializer
@property
def bias_initializer(self):
return self.cell.bias_initializer
@property
def unit_forget_bias(self):
return self.cell.unit_forget_bias
@property
def kernel_regularizer(self):
return self.cell.kernel_regularizer
@property
def recurrent_regularizer(self):
return self.cell.recurrent_regularizer
@property
def bias_regularizer(self):
return self.cell.bias_regularizer
@property
def kernel_constraint(self):
return self.cell.kernel_constraint
@property
def recurrent_constraint(self):
return self.cell.recurrent_constraint
@property
def bias_constraint(self):
return self.cell.bias_constraint
@property
def dropout(self):
return self.cell.dropout
@property
def recurrent_dropout(self):
return self.cell.recurrent_dropout
def get_config(self):
config = {
"filters": self.filters,
"kernel_size": self.kernel_size,
"strides": self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate,
"activation": activations.serialize(self.activation),
"recurrent_activation": activations.serialize(
self.recurrent_activation
),
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(
self.kernel_initializer
),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer
),
"bias_initializer": initializers.serialize(self.bias_initializer),
"unit_forget_bias": self.unit_forget_bias,
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer
),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer
),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(
self.activity_regularizer
),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint
),
"bias_constraint": constraints.serialize(self.bias_constraint),
"dropout": self.dropout,
"recurrent_dropout": self.recurrent_dropout,
}
base_config = super().get_config()
del base_config["cell"]
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config):
return cls(**config)