forked from x4nth055/emotion-recognition-using-speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
163 lines (129 loc) · 4.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from emotion_recognition import EmotionRecognizer
import pyaudio
import os
import wave
from sys import byteorder
from array import array
from struct import pack
from sklearn.ensemble import GradientBoostingClassifier, BaggingClassifier
from utils import get_best_estimators
THRESHOLD = 500
CHUNK_SIZE = 1024
FORMAT = pyaudio.paInt16
RATE = 16000
SILENCE = 30
def is_silent(snd_data):
"Returns 'True' if below the 'silent' threshold"
return max(snd_data) < THRESHOLD
def normalize(snd_data):
"Average the volume out"
MAXIMUM = 16384
times = float(MAXIMUM)/max(abs(i) for i in snd_data)
r = array('h')
for i in snd_data:
r.append(int(i*times))
return r
def trim(snd_data):
"Trim the blank spots at the start and end"
def _trim(snd_data):
snd_started = False
r = array('h')
for i in snd_data:
if not snd_started and abs(i)>THRESHOLD:
snd_started = True
r.append(i)
elif snd_started:
r.append(i)
return r
# Trim to the left
snd_data = _trim(snd_data)
# Trim to the right
snd_data.reverse()
snd_data = _trim(snd_data)
snd_data.reverse()
return snd_data
def add_silence(snd_data, seconds):
"Add silence to the start and end of 'snd_data' of length 'seconds' (float)"
r = array('h', [0 for i in range(int(seconds*RATE))])
r.extend(snd_data)
r.extend([0 for i in range(int(seconds*RATE))])
return r
def record():
"""
Record a word or words from the microphone and
return the data as an array of signed shorts.
Normalizes the audio, trims silence from the
start and end, and pads with 0.5 seconds of
blank sound to make sure VLC et al can play
it without getting chopped off.
"""
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=1, rate=RATE,
input=True, output=True,
frames_per_buffer=CHUNK_SIZE)
num_silent = 0
snd_started = False
r = array('h')
while 1:
# little endian, signed short
snd_data = array('h', stream.read(CHUNK_SIZE))
if byteorder == 'big':
snd_data.byteswap()
r.extend(snd_data)
silent = is_silent(snd_data)
if silent and snd_started:
num_silent += 1
elif not silent and not snd_started:
snd_started = True
if snd_started and num_silent > SILENCE:
break
sample_width = p.get_sample_size(FORMAT)
stream.stop_stream()
stream.close()
p.terminate()
r = normalize(r)
r = trim(r)
r = add_silence(r, 0.5)
return sample_width, r
def record_to_file(path):
"Records from the microphone and outputs the resulting data to 'path'"
sample_width, data = record()
data = pack('<' + ('h'*len(data)), *data)
wf = wave.open(path, 'wb')
wf.setnchannels(1)
wf.setsampwidth(sample_width)
wf.setframerate(RATE)
wf.writeframes(data)
wf.close()
def get_estimators_name(estimators):
result = [ '"{}"'.format(estimator.__class__.__name__) for estimator, _, _ in estimators ]
return ','.join(result), {estimator_name.strip('"'): estimator for estimator_name, (estimator, _, _) in zip(result, estimators)}
if __name__ == "__main__":
estimators = get_best_estimators(True)
estimators_str, estimator_dict = get_estimators_name(estimators)
import argparse
parser = argparse.ArgumentParser(description="""
Testing emotion recognition system using your voice,
please consider changing the model and/or parameters as you wish.
""")
parser.add_argument("-e", "--emotions", help=
"""Emotions to recognize separated by a comma ',', available emotions are
"neutral", "calm", "happy" "sad", "angry", "fear", "disgust", "ps" (pleasant surprise)
and "boredom", default is "sad,neutral,happy"
""", default="sad,neutral,happy")
parser.add_argument("-m", "--model", help=
"""
The model to use, 8 models available are: {},
default is "BaggingClassifier"
""".format(estimators_str), default="BaggingClassifier")
# Parse the arguments passed
args = parser.parse_args()
features = ["mfcc", "chroma", "mel"]
detector = EmotionRecognizer(estimator_dict[args.model], emotions=args.emotions.split(","), features=features, verbose=0)
detector.train()
print("Test accuracy score: {:.3f}%".format(detector.test_score()*100))
print("Please talk")
filename = "test.wav"
record_to_file(filename)
result = detector.predict(filename)
print(result)