forked from x4nth055/emotion-recognition-using-speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
86 lines (84 loc) · 3.09 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, GradientBoostingClassifier, BaggingClassifier
from sklearn.ensemble import AdaBoostRegressor, RandomForestRegressor, GradientBoostingRegressor, BaggingRegressor
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.neural_network import MLPClassifier, MLPRegressor
classification_grid_parameters = {
SVC(): {
'C': [0.0005, 0.001, 0.002, 0.01, 0.1, 1, 10],
'gamma' : [0.001, 0.01, 0.1, 1],
'kernel': ['rbf', 'poly', 'sigmoid']
},
RandomForestClassifier(): {
'n_estimators': [10, 40, 70, 100],
'max_depth': [3, 5, 7],
'min_samples_split': [0.2, 0.5, 0.7, 2],
'min_samples_leaf': [0.2, 0.5, 1, 2],
'max_features': [0.2, 0.5, 1, 2],
},
GradientBoostingClassifier(): {
'learning_rate': [0.05, 0.1, 0.3],
'n_estimators': [40, 70, 100],
'subsample': [0.3, 0.5, 0.7, 1],
'min_samples_split': [0.2, 0.5, 0.7, 2],
'min_samples_leaf': [0.2, 0.5, 1],
'max_depth': [3, 7],
'max_features': [1, 2, None],
},
KNeighborsClassifier(): {
'weights': ['uniform', 'distance'],
'p': [1, 2, 3, 4, 5],
},
MLPClassifier(): {
'hidden_layer_sizes': [(200,), (300,), (400,), (128, 128), (256, 256)],
'alpha': [0.001, 0.005, 0.01],
'batch_size': [128, 256, 512, 1024],
'learning_rate': ['constant', 'adaptive'],
'max_iter': [200, 300, 400, 500]
},
BaggingClassifier(): {
'n_estimators': [10, 30, 50, 60],
'max_samples': [0.1, 0.3, 0.5, 0.8, 1.],
'max_features': [0.2, 0.5, 1, 2],
}
}
regression_grid_parameters = {
# SVR(): {
# 'C': [0.0005, 0.001, 0.002, 0.01, 0.1, 1, 10],
# 'gamma' : [0.001, 0.01, 0.1, 1],
# 'kernel': ['rbf', 'poly', 'sigmoid']
# },
RandomForestRegressor(): {
'n_estimators': [10, 40, 70, 100],
'max_depth': [3, 5, 7],
'min_samples_split': [0.2, 0.5, 0.7, 2],
'min_samples_leaf': [0.2, 0.5, 1, 2],
'max_features': [0.2, 0.5, 1, 2],
},
GradientBoostingRegressor(): {
'learning_rate': [0.05, 0.1, 0.3],
'n_estimators': [40, 70, 100],
'subsample': [0.3, 0.5, 0.7, 1],
'min_samples_split': [0.2, 0.5, 0.7, 2],
'min_samples_leaf': [0.2, 0.5, 1],
'max_depth': [3, 7],
'max_features': [1, 2, None],
},
KNeighborsRegressor(): {
'weights': ['uniform', 'distance'],
'p': [1, 2, 3, 4, 5],
},
MLPRegressor(): {
'hidden_layer_sizes': [(200,), (200, 200), (300,), (400,)],
'alpha': [0.001, 0.005, 0.01],
'batch_size': [64, 128, 256, 512, 1024],
'learning_rate': ['constant', 'adaptive'],
'max_iter': [300, 400, 500, 600, 700]
},
BaggingRegressor(): {
'n_estimators': [10, 30, 50, 60],
'max_samples': [0.1, 0.3, 0.5, 0.8, 1.],
'max_features': [0.2, 0.5, 1, 2],
}
}