forked from r4bds/r4bds.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture_lab08.qmd
813 lines (583 loc) · 22.2 KB
/
lecture_lab08.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
---
title: "Lecture Lab 8"
author: "Søren Helweg Dam"
format:
revealjs:
embed-resources: true
theme: moon
slide-number: c/t
width: 1600
height: 900
mainfont: avenir
logo: images/r4bds_logo_small.png
footer: "R for Bio Data Science"
---
# R packages
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Lab 8 Learning Objectives
- Prepare a simple R package for distributing documented functions
- Explain the terms `Repository`, `Dependency`, and `Namespace`
- Implement testing in an R package
- Collaboratively work on an R package on GitHub
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Why R Packages?
Imagine you are analyzing some *bio data*.
You have written some nifty scripts that have sped up your analysis significantly.
Wouldn't it be great if:
- You could easily `share` these with your colleagues?
- `Document` them for your future self?
- Make them `accessible` to the entire scientific community?
Welcome to the world of R packages!
</br>
- In fact, R packages are an `industry-wide` practice for ensuring `reproducibility` and `consistency` in data analysis.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Today's lab
- What is an R package?
- Using an R package
- Building an R package
- Namespace
- Dependencies
- Repositories
- R package in 1-2-3
- The exercises
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## What is an R package?
- A `shareable` collection of `documented` code and/or data
![](images/L08_pkgdir.png){fig-align="center" width="65%"}
</br>
- [source](https://raw.githubusercontent.com/rstudio/cheatsheets/main/package-development.pdf)
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## R package examples
Some examples you might be familiar with:
- `Tidyverse`
- `dplyr`
- `tibble`
- `tidyr`
- `ggplot2`
- ...
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Using an R Package
:::: {.columns}
::: {.column width="45%"}
### Loading
:::
::: {.column width="10%"}
:::
::: {.column width="45%"}
### Attaching
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Using an R Package
:::: {.columns}
::: {.column width="45%"}
### Loading
- Makes functions/objects available.
- Requires prefixing function/object with the package name: `::`.
```{r}
#| echo: true
#| eval: false
dplyr::mutate()
```
:::
::: {.column width="10%"}
:::
::: {.column width="45%"}
### Attaching
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Using an R Package
:::: {.columns}
::: {.column width="45%"}
### Loading
- Makes functions/objects available.
- Requires prefixing function/object with the package name: `::`.
```{r}
#| echo: true
#| eval: false
dplyr::mutate()
```
:::
::: {.column width="10%"}
:::
::: {.column width="45%"}
### Attaching
- Adds the package to the R search path.
- Functions/objects can be used directly without using `::`.
```{r}
#| echo: true
#| eval: false
library("dplyr")
mutate()
```
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Using an R Package
:::: {.columns}
::: {.column width="45%"}
### Loading
- Makes functions/objects available.
- Requires prefixing function/object with the package name: `::`.
```{r}
#| echo: true
#| eval: false
dplyr::mutate()
```
:::
::: {.column width="10%"}
:::
::: {.column width="45%"}
### Attaching
- Adds the package to the R search path.
- Functions/objects can be used directly without using `::`.
```{r}
#| echo: true
#| eval: false
library("dplyr")
```
:::
::::
</br>
**Key Point:** Attaching makes calling functions easy but risks conflicts with function names from other packages. Using `::` is explicit and safer.
**OBS! Never use `library()` inside your package!** Because it can lead to unexpected behavior.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Building an R package
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## R package benefits
- `Reusable Code`: Avoid rewriting the same code for different projects.
- `Standardized Work`: Organize your analysis and code neatly.
- `Easy Documentation`: Maintain detailed documentation for every function and dataset.
- `Sharing & Collaboration`: Share your tools, analysis, and workflows seamlessly with peers.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## R package structure
![](images/L08_pkgdir.png){fig-align="center" width="65%"}
</br>
- [source](https://raw.githubusercontent.com/rstudio/cheatsheets/main/package-development.pdf)
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Building an R package
At its core, an `R package` is essentially a collection of `functions`.
*And/or data*
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Introduction to Functions
- Functions are `reusable blocks of code` designed to perform a specific task.
- They accept `parameter inputs` (arguments) and, after processing, return an `output`.
- Properly defined functions `enhance code clarity`, facilitate `debugging`, and foster `modularity`.
```{r}
#| echo: true
fun_name <- function(param1, param2 = 2){
# Do stuff
output <- paste(param1, param2)
# Return stuff
return(output)
}
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Using functions in a package
- Explicit parameters and arguments `improves clarity`:
```{r}
#| echo: true
# Good practice
fun_name(param1 = "something",
param2 = 2)
```
- Using default arguments:
```{r}
#| echo: true
# Often fine practice
# Here param1 = "something_else" and param2 = 2
fun_name("something_else")
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Caution with function names
_Avoid overwriting other function names_
```{r}
#| echo: true
mean(1:5)
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Caution with function names
_Avoid overwriting other function names_
```{r}
#| echo: true
mean(1:5)
```
```{r}
#| echo: true
mean <- function(vector){
result <- sum(vector)
return(result)
}
```
```{r}
#| echo: true
mean(1:5)
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Caution with function names
_Avoid overwriting other function names_
```{r}
#| echo: false
mean <- base::mean
```
```{r}
#| echo: true
mean(1:5)
```
```{r}
#| echo: true
mean <- function(vector){
result <- sum(vector)
return(result)
}
```
```{r}
#| echo: true
mean(1:5)
```
To resolve naming conflicts, utilize `namespaces`.
```{r}
#| echo: true
base::mean(1:5)
# Use namespaces with package::function()
# Note that "base" is an R package
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Namespace
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Namespace: An Introduction
- **Definition**:
- A namespace in R defines a `scoped environment` where each package's functions, data, and other objects reside.
- **Purpose**:
- `Avoid Clashes:` Ensures that functions or objects from one package won't accidentally reference or override those from another package.
- `Isolation:` Each package's contributions are isolated, ensuring they work as intended.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Seeing Namespace in action
Using `library()` lets R know which package's tools you intend to use.
However, if multiple packages have tools with the same name, the most recently attached package takes precedence.
:::: {.columns}
::: {.column width="50%"}
```{r}
#| eval: false
#| echo: true
library("dplyr")
library("MASS")
select() # MASS::select()
```
:::
::: {.column width="50%"}
```{r}
#| eval: false
#| echo: true
library("MASS")
library("dplyr")
select() # dplyr::select()
```
:::
::::
To prevent such overlaps, explicitly call functions using their namespaces:
```{r}
#| eval: false
#| echo: true
dplyr::select()
MASS::select()
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The Namespace Search Path
See how R's environment changes when packages are attached.
```{r}
#| echo: true
# Initial search path
search()
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The Namespace Search Path
See how R's environment changes when packages are attached.
```{r}
#| echo: true
# Initial search path
search()
# Attach the 'MASS' package
library("MASS")
# Attach the 'dplyr' package
library("dplyr")
# Search path after attaching packages
search()
```
**Observation:** As you load packages, they get added to the search path, affecting how R finds functions and objects.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## So why is Namespace Important?
1. `Avoids Conflicts`: Multiple packages might have functions with the same name. Namespaces ensure there's no confusion.
2. `Explicit Code`: Clearly indicates the origin of functions, enhancing readability and clarity.
3. `Ensures Stability`: Your code behaves as expected, even if you load multiple packages.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Specifying Namespace in your package
`Roxygen skeleton`
```{r}
#| echo: true
#| eval: false
#' Title
#'
#' @param param1
#' @param param2
#'
#' @return
#' @export
#'
#' @examples
fun_name <- function(param1, param2 = 2){
# Do stuff
output <- stringr::str_c(param1, param2, sep = " ")
# Return stuff
return(output)
}
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Specifying Namespace in your package
`Roxygen skeleton`
```{r}
#| echo: true
#' Title
#'
#' @param param1
#' @param param2
#' @importFrom stringr str_c
#'
#' @return string
#' @export
fun_name <- function(param1, param2 = 2){
# Do stuff
output <- stringr::str_c(param1, param2, sep = " ")
# Return stuff
return(output)
}
```
R now knows that `stringr` is a `dependency` in your package.
Including ```@importFrom stringr str_c``` in the function description lets you use `str_c` in your package with no issues. But keep `stringr::` for explicit code.
Now what exactly is a `dependency`?
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Dependencies
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Dependencies: Why They Matter
- A `Dependency` is a package that another package relies on. It ensures that all functions and features run as expected.
- They help `maintain` the `integrity` of a package when sharing or collaborating.
- They are installed with your package.
- Do not build what is already built!
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Dependencies: Why They Matter
- A `Dependency` is a package that another package relies on. It ensures that all functions and features run as expected.
- They help `maintain` the `integrity` of a package when sharing or collaborating.
- They are installed with your package.
- Do not build what is already built!
- Unless...
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Dependencies: A word of caution
`All dependencies` are installed with your package.
This can lead to `bloating`.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Dependency network - Tidyverse
```{r dep_network}
#| include: false
#| eval: false
library("pkgnet")
library("htmlwidgets")
package <- "tidyverse"
report <- CreatePackageReport(package)
saveWidget(report$DependencyReporter$graph_viz,
file = "images/L08_dependency_network.html",
selfcontained = TRUE,
background = "#002b36")
```
<iframe src="images/L08_dependency_network.html" width="100%" height="800"></iframe>
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Repositories
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Repositories: A Brief Overview
- `Repositories` are storage locations for packages.
- The two main repositories for R packages are `CRAN` (Comprehensive R Archive Network) and `Bioconductor`.
- Many developers also use `GitHub` as a platform to host and share their development versions of packages.
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Repositories: Installing packages
```{r install1}
#| echo: true
#| eval: false
install.packages("devtools") # CRAN: The Comprehensive R Archive Network
devtools::install_bioc("pairedGSEA") # Bioconductor (but use BiocManager::install()
devtools::install_github("cyCombine") # GitHub
devtools::install_cran("dplyr") # CRAN again
# Side note: devtools uses the "remotes" package, i.e., remotes::install_<repo> does the same
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Repositories: Installing packages
```{r install2}
#| echo: true
#| eval: false
install.packages("devtools") # CRAN: The Comprehensive R Archive Network
devtools::install_bioc("pairedGSEA") # Bioconductor (but use BiocManager::install())
devtools::install_github("cyCombine") # GitHub
devtools::install_cran("dplyr") # CRAN again
# Side note: devtools uses the "remotes" package, i.e., remotes::install_<repo> does the same
```
<br>
What if you want to include `non-R` packages/code?
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Integrating Python and C++ in Your R Package
In R, you can integrate other programming languages to take advantage of their specific capabilities and packages.
<br>
:::: {.columns}
::: {.column width="50%"}
### Python in R
```{r reticulate}
#| echo: true
library("reticulate")
py_run_string("import numpy as np")
py_run_string("result = np.mean([1, 2, 3, 4, 5])")
py_run_string("print('Mean:', result)")
```
:::
::: {.column width="5%"}
:::
::: {.column width="45%"}
### C++ in R
```{r Rcpp}
#| echo: true
library("Rcpp")
cppFunction('
int sumC(int a, int b) {
return a + b;
}
')
sumC(5, 6)
```
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Building an R package as easy as 1-2-3
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Standing on the shoulder of giants
:::: {.columns}
::: {.column width="50%"}
![](images/L08_giant.jpeg){fig-align="center" width="100%"}
:::
::: {.column width="5%"}
:::
::: {.column width="45%"}
Building packages with
- `devtools`
- `usethis`
- `roxygen2`
- `testthat`
:::
::::
## The 1-2-3 of R packages
```{r}
#| echo: true
#| eval: false
# Create the package
devtools::create("package name")
# Create function script
usethis::use_r("function name")
# Include dependencies
usethis::use_package("package name")
# Include data in your package
usethis::use_data(object) # set internal = TRUE if data should be internal
usethis::use_data_raw("object", open = TRUE) # describe how it was cleaned
# Create test for your function
usethis::use_test("function name")
# Automatically write package documentation
devtools::document()
# Simulate library("your package")
devtools::load_all()
# Check that your package is installable
devtools::check()
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Exercises
## Build your own R package
The central dogma of molecular biology
![](images/L08_dogma.png){fig-align="center" width="50%"}
</br>
- [source](https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology)
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Break, then exercises!