-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPatchEmbed.py
186 lines (160 loc) · 6.54 KB
/
PatchEmbed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
from copy import deepcopy
import numpy as np
from gpt.FixedEmbed import Position_Fixed
from net.fullconnect import fclayer
from net.Convolution import convolution_layer
from net.layernorm import layer_norm
from net.Embedding import Embedding_layer
class PatchEmbed_flatten(object):
def __init__(self, embed_dim, images_shape, n_patch, patchnorm=True) -> None:
self.embed_dim = embed_dim
n, c, h, w = images_shape
self.h_length = h // n_patch
self.w_length = w // n_patch
self.n_patch = n_patch
self.patchnorm =patchnorm
self.fullconnect = fclayer(self.h_length * self.w_length * c, self.embed_dim, True)
if patchnorm:
self.norm = layer_norm(self.embed_dim)
def forward(self, images):
n, c, h, w = images.shape
h_length = self.h_length
w_length = self.w_length
n_patch = self.n_patch
out = np.zeros((n, n_patch**2, h_length * w_length * c))
for ni in range(n):
num_patch = 0
for i in range(n_patch):
h_stride = i * h_length
for j in range(n_patch):
w_stride = j * w_length
cutimg = images[ni, :, h_stride:h_stride + h_length, w_stride:w_stride+w_length]
out[ni, num_patch, :] = cutimg.flatten()
num_patch += 1
self.inputs = deepcopy(out)
output = self.fullconnect.forward(out)
if self.patchnorm:
output = self.norm.forward(output)
return output
def backward(self, delta):
if self.patchnorm:
delta = self.norm.backward(delta)
input_delta = self.fullconnect.backward(delta, self.inputs)
return input_delta
def update(self, lr):
if self.patchnorm:
self.norm.update(lr)
self.fullconnect.update(lr)
def setzero(self):
if self.patchnorm:
self.norm.setzero()
self.fullconnect.setzero()
def save_model(self):
model = []
if self.patchnorm:
model.append(self.norm.save_model())
model.append(self.fullconnect.save_model())
return model
def restore_model(self, models):
if self.patchnorm:
self.norm.restore_model(models[0])
self.fullconnect.restore_model(models[-1])
class PatchEmbed_convolution(object):
def __init__(self, embed_dim, images_shape, n_patch, patchnorm=True) -> None:
self.embed_dim = embed_dim
n, c, h, w = images_shape
self.batch = n
self.h_length = h // n_patch
self.w_length = w // n_patch
self.n_patch = n_patch
self.patchnorm =patchnorm
self.convolution = convolution_layer(c, embed_dim, kernel_size=self.w_length, stride=self.w_length)
if patchnorm:
self.norm = layer_norm(self.embed_dim)
def forward(self, images):
out = self.convolution.forward(images)
out = np.transpose(out, (0, 2, 3, 1))
out = np.reshape(out, (self.batch, -1, self.embed_dim)) #n, ph*pw, ed
if self.patchnorm:
output = self.norm.forward(out)
return out
def backward(self, delta):
if self.patchnorm:
delta = self.norm.backward(delta)
delta = np.reshape(delta, (self.batch, self.n_patch, self.n_patch, self.embed_dim))
delta = np.transpose(delta, (0, 3, 1, 2))
input_delta = self.convolution.backward(delta)
return input_delta
def update(self, lr):
if self.patchnorm:
self.norm.update(lr)
self.convolution.update(lr)
def setzero(self):
if self.patchnorm:
self.norm.setzero()
self.convolution.setzero()
def save_model(self):
model = []
if self.patchnorm:
model.append(self.norm.save_model())
model.append(self.convolution.save_model())
return model
def restore_model(self, models):
if self.patchnorm:
self.norm.restore_model(models[0])
self.convolution.restore_model(models[-1])
class Position_Embedding(Embedding_layer):
def __init__(self, context_length, vocab_size, embed_dim, adam = False, float32=False, float16 = False):
self.context_length = context_length
self.text_embedding = Embedding_layer(vocab_size, embedding_dim = embed_dim, adam = adam, float32=float32, float16=float16)
# self.pos_embedding = Position_Fixed(context_length, embed_dim)
self.pos_embedding = Embedding_layer(context_length, embedding_dim = embed_dim, adam = adam, float32=float32, float16=float16)
self.adam = adam
def forward(self, inputs):
n, sequence_length = inputs.shape
te = self.text_embedding.forward(inputs) # n, sequence_length, embed_dim
po = self.pos_embedding.forward(np.arange(sequence_length)) # sequence_length, embed_dim
if len(po.shape)!=3:
po = np.expand_dims(po, 0)
return te + po
def backward(self, delta):
input_delta = self.text_embedding.backward(delta)
delta = np.sum(delta, axis = 0, keepdims=False)
_ = self.pos_embedding.backward(delta)
return input_delta
def update(self, lr):
self.text_embedding.update(lr)
self.pos_embedding.update(lr)
def setzero(self):
self.text_embedding.setzero()
self.pos_embedding.setzero()
def save_model(self):
return [self.text_embedding.save_model(), self.pos_embedding.save_model()]
def restore_model(self, models):
self.text_embedding.restore_model(models[0])
self.pos_embedding.restore_model(models[1])
if __name__=="__main__":
batchsize = 1
lr = 0.0001
embed_dim = 30
images_shape = (batchsize, 3, 30-2, 30-2)
n_patch = 7
inputs = np.random.randn(batchsize, 3, 30-2, 30-2)
patchemb = PatchEmbed_flatten(embed_dim, images_shape, n_patch)
# patchemb = PatchEmbed_convolution(embed_dim, images_shape, n_patch)
context_length = 100
vocab_size = 300
embed_dim = 200
posiemb = Position_Embedding(context_length, vocab_size, embed_dim)
outputs = np.random.randn(batchsize, context_length, embed_dim)
inputs = np.random.randint(0, vocab_size, (batchsize, context_length))
# inputs = np.arange(batchsize * context_length).reshape((batchsize, context_length))
for i in range(30000):
out = posiemb.forward(inputs)
sum = np.sum((outputs - out) * (outputs - out))
delta = 2 * (out - outputs)
_ = posiemb.backward(delta)
posiemb.update(lr = 0.001)
posiemb.setzero()
print(sum)