-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssc_module.py
95 lines (76 loc) · 3.04 KB
/
ssc_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Date: 2021/04
Author:Yushan Zheng
Email:[email protected]
"""
import os
import torch
import torch.nn as nn
from collections import OrderedDict
EPSILON = 0.00001
PIXEL_MIN_VALUE = 1.0/255.0
class StainStdCapsule(nn.Module):
def __init__(self, routing_iter=3, stain_type=2, group_num=5, group_width=3):
super(StainStdCapsule, self).__init__()
self.group_num = group_num
self.stain_type = stain_type
self.routing_iter = routing_iter
self.width = group_width
self.debug_counter = 0
self.stain_presep = nn.Sequential(OrderedDict([
('ssc_conv0', nn.Conv2d(3, group_num*group_width
, kernel_size=1, bias=True, padding=0)),
('ssc_act0', nn.LeakyReLU()),
]))
self.projection = nn.Sequential(OrderedDict([
('ssc_conv1',nn.Conv2d(group_num*group_width, group_num*stain_type,
kernel_size=1, bias=False, padding=0, groups=group_num)),
('ssc_act1', nn.LeakyReLU()),
]))
self.reconstruction = nn.Sequential(OrderedDict([
('ssc_conv_re', nn.Conv2d(stain_type, 3
, kernel_size=1, bias=True, padding=0)),
('ssc_bn_re', nn.BatchNorm2d(3)),
('ssc_act_re', nn.LeakyReLU()),
]))
def forward(self, input_tensor):
od_input = -torch.log((input_tensor + PIXEL_MIN_VALUE))
x = self.stain_presep(od_input)
x = self.projection(x)
x = x.reshape(x.size(0), self.group_num, self.stain_type, x.size(2), x.size(3))
c = self.sparsity_routing(x)
output = torch.sum(x * c, dim=1)
re_image = self.reconstruction(output)
re_image = torch.exp(-re_image)
return output, re_image
def sparsity_routing(self, input_tensor):
u = input_tensor.data
s = u
b = 0.0
for _ in range(self.routing_iter-1):
b = b + self.pixel_sparsity(s) + self.channel_sparsity(s)
c = b.softmax(dim=1)
s = torch.sum(c * u, dim=1, keepdim=True)
s = s + u
score = self.pixel_sparsity(s) + self.channel_sparsity(s)
b = b + score
c = b.softmax(dim=1)
return c
def pixel_sparsity(self, group_stains):
values = group_stains + EPSILON
l2 = values.pow(2).sum(dim=2, keepdim=True)
l2 = l2.sqrt() + EPSILON
l1 = values.abs().sum(dim=2, keepdim=True)
sqrt_n = self.stain_type ** 0.5
sparsity = (sqrt_n - l1 / l2) / (sqrt_n - 1)
sparsity = sparsity.mean(dim=(3,4), keepdim=True)
return sparsity
def channel_sparsity(self, group_stains):
values = group_stains + EPSILON
l2 = values.pow(2).sum(dim=(3,4), keepdim=True)
l2 = l2.sqrt() + EPSILON
l1 = values.abs().sum(dim=(3,4), keepdim=True)
sqrt_n = (group_stains.size(3) * group_stains.size(4)) ** 0.5
sparsity = (sqrt_n - l1 / l2) / (sqrt_n - 1)
sparsity = sparsity.mean(dim=2, keepdim=True)
return sparsity