-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
37 lines (30 loc) · 1.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
Date: 2021/04
Author:Yushan Zheng
Email:[email protected]
"""
import torch
import torchvision.models as models
from ssc_module import StainStdCapsule
class ApplicationWithSSC(torch.nn.Module):
def __init__(self, cnn_arch_name, num_classes, args=None):
super(ApplicationWithSSC, self).__init__()
print("=> creating ssc module")
self.ssc_module = StainStdCapsule(
routing_iter=args.num_routings,
stain_type=args.num_stains,
group_num=args.num_groups,
group_width=args.group_width,
)
print("=> creating cnn module '{}'".format(cnn_arch_name))
self.app_module = models.__dict__[cnn_arch_name](num_classes=num_classes)
# Here, we need to change the input channels from 3 to the number of stains
# by redefining the first convolution layer of the CNN backbone.
# Different CNN backbones have different definitions of the first layer.
# The code below is specific for DenseNet series.
self.app_module.features.conv0 = torch.nn.Conv2d(args.num_stains, 64, kernel_size=7, stride=2,
padding=3, bias=False)
def forward(self, input_tensor):
normed_input, reconst = self.ssc_module(input_tensor)
output = self.app_module(normed_input)
return output, reconst