This document outlines the deployment process for a VisualQnA application utilizing the GenAIComps microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as llm. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/lvm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/tgi-llava/Dockerfile .
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the visuralqna.py
Python script. Build the MegaService Docker image using the command below:
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/VisualQnA
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd ../..
Build frontend Docker image via below command:
cd GenAIExamples/VisualQnA/ui
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
Then run the command docker images
, you will have the following 5 Docker Images:
ghcr.io/huggingface/tgi-gaudi:2.0.5
opea/lvm-tgi:latest
opea/visualqna:latest
opea/visualqna-ui:latest
opea/nginx
Since the compose.yaml
will consume some environment variables, you need to setup them in advance as below.
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export LVM_MODEL_ID="llava-hf/llava-v1.6-mistral-7b-hf"
export LVM_ENDPOINT="http://${host_ip}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${host_ip}
export LVM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/visualqna"
Note: Please replace with host_ip
with you external IP address, do NOT use localhost.
cd GenAIExamples/VisualQnA/docker_compose/intel/hpu/gaudi/
docker compose -f compose.yaml up -d
NOTE: Users need at least one Gaudi cards to run the VisualQnA successfully.
Follow the instructions to validate MicroServices.
Note: If you see an "Internal Server Error" from the
curl
command, wait a few minutes for the microserver to be ready and then try again.
-
LLM Microservice
http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json'
-
MegaService
curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{ "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What'\''s in this image?" }, { "type": "image_url", "image_url": { "url": "https://www.ilankelman.org/stopsigns/australia.jpg" } } ] } ], "max_tokens": 300 }'
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the compose.yaml
file as shown below:
visualqna-gaudi-ui-server:
image: opea/visualqna-ui:latest
...
ports:
- "80:5173"