-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTOENet.py
171 lines (115 loc) · 6.08 KB
/
TOENet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
class TOENet(nn.Module):
def __init__(self):
super(TOENet,self).__init__()
self.mns = MainNetworkStructure(3,8)
def forward(self,x):
Fout = self.mns(x) + x
return Fout
class MainNetworkStructure(nn.Module):
def __init__(self,inchannel,channel):
super(MainNetworkStructure,self).__init__()
self.cfceb_l = CCEM(channel)
self.cfceb_m = CCEM(channel*2)
self.cfceb_s = CCEM(channel*4)
self.ein = BRB(channel)
self.el = BRB(channel)
self.em = BRB(channel*2)
self.es = BRB(channel*4)
self.ds = BRB(channel*4)
self.dm = BRB(channel*2)
self.dl = BRB(channel)
self.conv_eltem = nn.Conv2d(channel,2*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_emtes = nn.Conv2d(2*channel,4*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_r_eltem = nn.Conv2d(channel,2*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_r_emtes = nn.Conv2d(2*channel,4*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_g_eltem = nn.Conv2d(channel,2*channel,kernel_size=1,stride=1,padding=0,bias=False)
#self.conv_g_emtes = nn.Conv2d(2*channel,4*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_b_eltem = nn.Conv2d(channel,2*channel,kernel_size=1,stride=1,padding=0,bias=False)
#self.conv_b_emtes = nn.Conv2d(2*channel,4*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_dstdm = nn.Conv2d(4*channel,2*channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_dmtdl = nn.Conv2d(2*channel,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_r_in = nn.Conv2d(1,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_g_in = nn.Conv2d(1,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_b_in = nn.Conv2d(1,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_in = nn.Conv2d(inchannel,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_out = nn.Conv2d(channel,3,kernel_size=1,stride=1,padding=0,bias=False)
self.maxpool = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
def _upsample(self,x,y):
_,_,H,W = y.size()
return F.upsample(x,size=(H,W),mode='bilinear')
def forward(self,x):
r = self.conv_r_in(x[:,0,:,:].unsqueeze(1))
g = self.conv_g_in(x[:,1,:,:].unsqueeze(1))
b = self.conv_b_in(x[:,2,:,:].unsqueeze(1))
x_r_l, x_g_l, x_b_l, x_out_l = self.cfceb_l(r,g,b)
x_r_m, x_g_m, x_b_m, x_out_m = self.cfceb_m(self.conv_r_eltem(self.maxpool(x_r_l)), self.conv_g_eltem(self.maxpool(x_g_l)), self.conv_b_eltem(self.maxpool(x_b_l)))
_, _, _, x_out_s = self.cfceb_s(self.conv_r_emtes(self.maxpool(x_r_m)), self.conv_r_emtes(self.maxpool(x_g_m)), self.conv_r_emtes(self.maxpool(x_b_m)))
x_elin = self.ein(self.conv_in(x))
elout = self.el(x_elin * x_out_l)
x_emin = self.conv_eltem(self.maxpool(elout))
emout = self.em(x_emin * x_out_m)
x_esin = self.conv_emtes(self.maxpool(emout))
esout = self.es(x_esin * x_out_s)
dsout = self.ds(esout)
x_dmin = self._upsample(self.conv_dstdm(dsout),emout) + emout
dmout = self.dm(x_dmin)
x_dlin = self._upsample(self.conv_dmtdl(dmout),elout) + elout
dlout = self.dl(x_dlin)
x_out = self.conv_out(dlout)
return x_out
class CCEM(nn.Module):
def __init__(self,channel):
super(CCEM,self).__init__()
self.bb_R = BRB(channel)
self.bb_G = BRB(channel)
self.bb_B = BRB(channel)
self.cab = CAB(2*channel)
self.cab_RGB = CAB(3*channel)
self.conv_out1 = nn.Conv2d(channel*2,channel,kernel_size=1,stride=1,padding=0,bias=False)
self.conv_out2 = nn.Conv2d(channel*3,channel,kernel_size=1,stride=1,padding=0,bias=False)
def forward(self,r,g,b):
x_r = self.bb_R(r)
x_g = self.bb_G(g)
x_b = self.bb_B(b)
x_r_a = self.conv_out1(self.cab(torch.cat((x_r,x_g),1))) #+ x_r + x_g
x_g_a = self.conv_out1(self.cab(torch.cat((x_r,x_b),1))) #+ x_r + x_b
x_b_a = self.conv_out1(self.cab(torch.cat((x_g,x_b),1))) #+ x_g + x_b
x_rgb_a = self.cab_RGB(torch.cat((x_r,x_g,x_b),1))#*torch.cat((x_r,x_g,x_b),1)
x_out = self.conv_out2(torch.cat((x_r_a , x_g_a , x_b_a),1)+x_rgb_a) # + x_r + x_g + x_b
return x_r, x_g, x_b, x_out
class BRB(nn.Module):
def __init__(self,channel,norm=False):
super(BRB,self).__init__()
self.conv_1 = nn.Conv2d(channel,channel,kernel_size=3,stride=1,padding=1,bias=False)
self.conv_2 = nn.Conv2d(channel,channel,kernel_size=3,stride=1,padding=1,bias=False)
#self.conv_3 = nn.Conv2d(channel,channel,kernel_size=3,stride=1,padding=1,bias=False)
self.conv_out = nn.Conv2d(channel,channel,kernel_size=3,stride=1,padding=1,bias=False)
self.act = nn.PReLU(channel)
self.norm = nn.GroupNorm(num_channels=channel,num_groups=1)# nn.InstanceNorm2d(channel)#
def forward(self,x):
x_1 = self.act(self.norm(self.conv_1(x)))
x_2 = self.act(self.norm(self.conv_2(x_1)))
x_out = self.act(self.norm(self.conv_out(x_2)) + x)
return x_out
class CAB(nn.Module):
def __init__(self , in_planes , ration = 4):
super(CAB, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes , in_planes // ration , 1 , bias = False)
self.act1 = nn.PReLU(in_planes // ration)
self.fc2 = nn.Conv2d(in_planes // ration , in_planes , 1 , bias = False)
self.sigmoid = nn.Sigmoid()
self.norm1 = nn.GroupNorm(num_channels=in_planes // ration,num_groups=1)
self.norm2 = nn.GroupNorm(num_channels=in_planes,num_groups=1)
def forward(self , x):
avg_out = self.norm2(self.fc2(self.act1(self.norm1(self.fc1(self.avg_pool(x))))))
max_out = self.norm2(self.fc2(self.act1(self.norm1(self.fc1(self.max_pool(x))))))
camap = self.sigmoid(avg_out + max_out)
return camap