-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbarotropic.py
144 lines (121 loc) · 3.64 KB
/
barotropic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
from ode import OdeSolver
import numpy as np
# import scipy.fftpack as fft
import matplotlib.pyplot as plt
fft = np.fft
dt = 0.1
class Grid:
nx, ny = (128, 128)
xmin, xmax = (0.0, 2*np.pi)
ymin, ymax = (0.0, 2*np.pi)
xi = np.linspace(xmin, xmax, nx+1)
yi = np.linspace(ymin, ymax, ny+1)
x = (xi[1:] + xi[:-1])/2
y = (yi[1:] + yi[:-1])/2
dx = (xmax - xmin)/nx
dy = (ymax - ymin)/ny
kx1d = complex(0.0, 2*np.pi)*fft.fftfreq(nx, d=dx)
ky1d = complex(0.0, 2*np.pi)*fft.fftfreq(ny, d=dy)
kx = kx1d[:, np.newaxis]
ky = ky1d[np.newaxis, :]
ksqure = kx**2 + ky**2
iksqure = 1/ksqure
iksqure[0, 0] = 0.0
@classmethod
def ifft(cls, f):
return np.real(fft.ifft2(f))
@classmethod
def fft(cls, a):
return fft.fft2(a)
@classmethod
def px(cls, a, fin=True, fout=True):
if not fin:
a = cls.fft(a)
a = cls.kx*a
if not fout:
a = cls.ifft(a)
return a
@classmethod
def py(cls, a, fin=True, fout=True):
if not fin:
a = cls.fft(a)
a = cls.ky*a
if not fout:
a = cls.ifft(a)
return a
@classmethod
def laplace(cls, a, fin=True, fout=True):
if not fin:
a = cls.fft(a)
a = cls.ksqure*a
if not fout:
a = cls.ifft(a)
return a
@classmethod
def ilaplace(cls, a, fin=True, fout=True):
if not fin:
a = cls.fft(a)
a = cls.iksqure*a
a[0, 0] = 0.0
if not fout:
a = cls.ifft(a)
return a
@classmethod
def tend_tot(cls, zeta):
zeta = cls.fft(zeta)
phi = cls.ilaplace(zeta)
u = -cls.py(phi, fout=False)
v = cls.px(phi, fout=False)
pzpx = cls.px(zeta, fout=False)
pzpy = cls.py(zeta, fout=False)
print('CFL', np.max(np.sqrt(u**2 + v**2))*dt/cls.dx)
return -u*pzpx - v*pzpy + 1.0e-4*cls.laplace(zeta, fout=False)
def read_init():
ic = np.zeros((Grid.nx, Grid.ny))
ymid = Grid.ny//2
xmid = Grid.nx//2
width = 10
ic[:, ymid-width:ymid] = -1.0
ic[:, ymid:ymid+width] = 1.0
ic[xmid:xmid+1, ymid:ymid+1] += 0.1
ic[xmid-1:xmid, ymid-1:ymid] -= 0.1
ic.setflags(write=False)
return ic
class Model(OdeSolver):
ic = read_init()
def __init__(self, dt, odescheme):
self.grid = Grid()
tend = self.grid.tend_tot
super().__init__(tend, dt=dt, scheme=odescheme)
def iter_states(self):
return super().iter_states(self.ic)
def plot(self, state, ax, fig):
# state = read_init()
# state = -Grid.py(state, fin=False, fout=False)
# state = Grid.ilaplace(state, fin=False, fout=False)
# state = -Grid.py(state, fin=False, fout=False)
im = ax.contourf(self.grid.x, self.grid.y, state.T,
cmap='seismic', levels=np.linspace(-1.0, 1.0, 32),
extend='both')
cb = fig.colorbar(im, ax=ax)
cb.set_ticks([-1.0, -0.5, 0.0, 0.5, 1.0])
cb.set_label(r'$\zeta$')
# ax.plot(state.T)
def main():
nstep = int(5.0e3)
model = Model(dt=dt, odescheme='rk4')
for i, state in zip(range(nstep), model.iter_states()):
if i % 10 == 0:
print(f'nstep {i:04d}')
fig, ax = plt.subplots()
model.plot(state, ax, fig)
plt.savefig(f'{i:04d}.png')
fig.clear()
plt.close(fig)
# plt.plot(state, label=scheme, marker='o', linestyle='')
# plt.plot(Model.ic, label='exact', linestyle='-')
# plt.legend()
# plt.show()
if __name__ == '__main__':
main()