forked from yuexujiang/MUTarget
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
713 lines (628 loc) · 36.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import torch
torch.manual_seed(0)
from torch.cuda.amp import GradScaler, autocast
import argparse
import os
import yaml
import numpy as np
# import torchmetrics
from time import time
from model import *
from utils import *
from sklearn.metrics import roc_auc_score,average_precision_score,matthews_corrcoef,recall_score,precision_score,f1_score
import pandas as pd
import sys
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
from loss import SupConHardLoss
from utils import prepare_tensorboard
from data_clean import prepare_dataloaders as prepare_dataloader_clean
from data_batchsample import prepare_dataloaders as prepare_dataloader_batchsample
from model import MaskedLMDataCollator
def loss_fix(id_frag, motif_logits, target_frag, tools):
#id_frag [batch]
#motif_logits [batch, num_clas, seq]
#target_frag [batch, num_clas, seq]
fixed_loss = 0
for i in range(len(id_frag)):
frag_ind = id_frag[i].split('@')[1]
target_thylakoid = target_frag[i, -1] # -1 for Thylakoid, [seq]; -2 for chloroplast
# label_first = target_thylakoid[0] # 1 or 0
target_chlo = target_frag[i, -2]
if frag_ind == '0' and torch.max(target_chlo) == 0 and torch.max(target_thylakoid) == 1:
# print("case2")
l = torch.where(target_thylakoid == 1)[0][0]
true_chlo = target_frag[i, -2, :(l-1)] == 1
false_chlo = target_frag[i, -2, :(l-1)] == 0
motif_logits[i, -2, :(l-1)][true_chlo] = 100
motif_logits[i, -2, :(l-1)][false_chlo] = -100
# return fixed_loss
# return target_frag
return motif_logits, target_frag
def make_buffer(id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple):
id_frags_list = []
seq_frag_list = []
target_frag_list = []
for i in range(len(id_frag_list_tuple)):
id_frags_list.extend(id_frag_list_tuple[i])
seq_frag_list.extend(seq_frag_list_tuple[i])
target_frag_list.extend(target_frag_nplist_tuple[i])
seq_frag_tuple = tuple(seq_frag_list)
target_frag_pt = torch.from_numpy(np.stack(target_frag_list, axis=0))
type_protein_pt = torch.stack(list(type_protein_pt_tuple), axis=0)
return id_frags_list, seq_frag_tuple, target_frag_pt, type_protein_pt
def train_loop(tools, configs, warm_starting,train_writer):
# accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=tools['num_classes'], average='macro')
# f1_score = torchmetrics.F1Score(num_classes=tools['num_classes'], average='macro', task="multiclass")
# accuracy.to(tools['train_device'])
# f1_score.to(tools["train_device"])
global global_step
tools["optimizer"].zero_grad()
scaler = GradScaler()
size = len(tools['train_loader'].dataset)
num_batches = len(tools['train_loader'])
print("size="+str(size)+" num_batches="+str(num_batches))
train_loss = 0
# cs_num=np.zeros(9)
# cs_correct=np.zeros(9)
# type_num=np.zeros(10)
# type_correct=np.zeros(10)
# cutoff=0.5
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
# model.train().cuda()
tools['net'].train().to(tools['train_device'])
for batch, (id_tuple, id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple, sample_weight_tuple, pos_neg) in enumerate(tools['train_loader']):
b_size = len(id_tuple)
flag_batch_extension = False
if (configs.supcon.apply and not warm_starting and pos_neg is not None) or \
(configs.supcon.apply and warm_starting):
#customlog(tools["logfilepath"], f"flag_batch_extension")
#print("flag_batch_extension")
"""
For two scenarios (CASE B & C, see Encoder::forward()) where the batch needs to be extended,
extend the 6 tuples with pos_neg
0 - id_tuple,
1 - id_frag_list_tuple,
2 - seq_frag_list_tuple,
3 - target_frag_nplist_tuple,
4 - type_protein_pt_tuple,
5 - and sample_weight_tuple
without the extending, each len(tuple) == batch_size
after extending, len(tuple) == batch_size * (1 + n_pos + n_neg)
"""
flag_batch_extension = True
for one_in_a_batch in range(b_size):
# pos_neg[one_in_a_batch][0]
for one_of_pos in range(configs.supcon.n_pos):
# pos_neg[one_in_a_batch][0][one_of_pos]
id_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][0],)
id_frag_list_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][1],)
seq_frag_list_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][2],)
target_frag_nplist_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][3],)
type_protein_pt_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][4],)
sample_weight_tuple += (pos_neg[one_in_a_batch][0][one_of_pos][5],)
for one_in_a_batch in range(b_size):
# pos_neg[one_in_a_batch][1]
for one_of_neg in range(configs.supcon.n_neg):
# pos_neg[one_in_a_batch][1][one_of_neg]
id_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][0],)
id_frag_list_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][1],)
seq_frag_list_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][2],)
target_frag_nplist_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][3],)
type_protein_pt_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][4],)
sample_weight_tuple += (pos_neg[one_in_a_batch][1][one_of_neg][5],)
type_protein_pt_tuple_temp = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in type_protein_pt_tuple]
type_protein_pt_tuple = type_protein_pt_tuple_temp
id_frags_list, seq_frag_tuple, target_frag_pt, type_protein_pt = make_buffer(id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple)
with autocast():
# Compute prediction and loss
encoded_seq=tokenize(tools, seq_frag_tuple)
#print(encoded_seq['input_ids'])
if configs.train_settings.MLM.enable:
encoded_seq['input_ids'], _ = tools['masked_lm_data_collator'].mask_tokens(encoded_seq['input_ids'])
#print(encoded_seq['input_ids'])
#print(_)
if type(encoded_seq)==dict:
for k in encoded_seq.keys():
encoded_seq[k]=encoded_seq[k].to(tools['train_device'])
else:
encoded_seq=encoded_seq.to(tools['train_device'])
#print(id_tuple)
#print(encoded_seq)
classification_head, motif_logits, projection_head = tools['net'](
encoded_seq,
id_tuple,
id_frags_list,
seq_frag_tuple,
pos_neg,
warm_starting)
weighted_loss_sum = 0
weighted_supcon_loss = -1
class_loss = -1
position_loss=-1
if not warm_starting:
motif_logits, target_frag = loss_fix(id_frags_list, motif_logits, target_frag_pt, tools)
sample_weight_pt = torch.from_numpy(np.array(sample_weight_tuple)).to(tools['train_device']).unsqueeze(1)
position_loss = tools['loss_function'](
motif_logits,
target_frag.to(tools['train_device']))
#class_weights = target_frag * (tools['pos_weight'] - 1) + 1
#position_loss = torch.mean(position_loss * class_weights.to(tools['train_device']))
if configs.train_settings.data_aug.enable:
class_loss = torch.mean(tools['loss_function_pro'](classification_head, type_protein_pt.to(tools['train_device']))) #remove sample_weight_pt
else:
class_loss = torch.mean(tools['loss_function_pro'](classification_head, type_protein_pt.to(tools['train_device'])) * sample_weight_pt)
train_writer.add_scalar('step class_loss', class_loss.item(), global_step=global_step)
train_writer.add_scalar('step position_loss', position_loss.item(), global_step=global_step)
print(f"{global_step} class_loss:{class_loss.item()} position_loss:{position_loss.item()}")
weighted_loss_sum=class_loss+position_loss
if configs.supcon.apply and configs.supcon.apply_supcon_loss: #configs.supcon.apply: # and warm_starting: calculate supcon loss no matter whether warm_starting or not.
supcon_loss = tools['loss_function_supcon'](
projection_head,
configs.supcon.temperature,
configs.supcon.n_pos)
weighted_supcon_loss = configs.supcon.weight * supcon_loss
print(f"{global_step} supcon_loss:{weighted_supcon_loss.item()}")
train_writer.add_scalar('step supcon_loss', weighted_supcon_loss.item(), global_step=global_step)
weighted_loss_sum += weighted_supcon_loss
if configs.supcon.apply is False and warm_starting:
raise ValueError("Check configs.supcon.apply and configs.supcon.warm_start")
train_loss += weighted_loss_sum.item()
# Backpropagation
scaler.scale(weighted_loss_sum).backward()
scaler.step(tools['optimizer'])
scaler.update()
tools['scheduler'].step()
print(f"{global_step} loss:{weighted_loss_sum.item()}\n")
train_writer.add_scalar('step loss', weighted_loss_sum.item(), global_step=global_step)
train_writer.add_scalar('learning_rate', tools['scheduler'].get_lr()[0], global_step=global_step)
#if global_step % configs.train_settings.log_every == 0: #30 before changed into 0
if batch % configs.train_settings.log_every == 0: #for comparison with original codes
loss, current = weighted_loss_sum.item(), (batch + 1) * b_size # len(id_tuple)
if flag_batch_extension:
customlog(tools["logfilepath"], f"{global_step} loss: {loss:>7f} [{current:>5d}/{size:>5d}] -> " +
f"[{(batch + 1) * len(id_tuple):>5d}/{size*(1+configs.supcon.n_pos+configs.supcon.n_neg):>5d}]")
else:
customlog(tools["logfilepath"], f"{global_step} loss: {loss:>7f} [{current:>5d}/{size:>5d}]\n")
if class_loss !=-1:
customlog(tools["logfilepath"], f"{global_step} class loss: {class_loss.item():>7f} position_loss:{position_loss.item():>7f}\n")
if weighted_supcon_loss !=-1:
customlog(tools["logfilepath"], f"{global_step} supcon loss: {weighted_supcon_loss.item():>7f}\n")
global_step+=1
epoch_loss = train_loss/num_batches
return epoch_loss
def test_loop(tools, dataloader,train_writer,valid_writer,configs):
customlog(tools["logfilepath"], f'number of test steps per epoch: {len(dataloader)}\n')
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
# model.eval().cuda()
tools['net'].eval().to(tools["valid_device"])
num_batches = len(dataloader)
test_loss=0
test_class_loss=0
test_position_loss=0
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
#print("in test loop")
with torch.no_grad():
for batch, (id_tuple, id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple, sample_weight_tuple, pos_neg) in enumerate(dataloader):
id_frags_list, seq_frag_tuple, target_frag_pt, type_protein_pt = make_buffer(id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple)
encoded_seq=tokenize(tools, seq_frag_tuple)
if type(encoded_seq)==dict:
for k in encoded_seq.keys():
encoded_seq[k]=encoded_seq[k].to(tools['valid_device'])
else:
encoded_seq=encoded_seq.to(tools['valid_device'])
#print("ok1")
classification_head, motif_logits, projection_head = tools['net'](
encoded_seq,
id_tuple,id_frags_list,seq_frag_tuple,
None, False) #for test_loop always used None and False!
#print("ok2")
weighted_loss_sum = 0
#if not warm_starting:
class_loss = 0
position_loss=0
motif_logits, target_frag = loss_fix(id_frags_list, motif_logits, target_frag_pt, tools)
sample_weight_pt = torch.from_numpy(np.array(sample_weight_tuple)).to(tools['valid_device']).unsqueeze(1)
position_loss = tools['loss_function'](motif_logits, target_frag.to(tools['valid_device']))
#class_weights = target_frag * (tools['pos_weight'] - 1) + 1
#position_loss = torch.mean(position_loss * class_weights.to(tools['valid_device']))
if configs.train_settings.data_aug.enable:
class_loss = torch.mean(tools['loss_function_pro'](classification_head, type_protein_pt.to(tools['valid_device'])))
else:
class_loss = torch.mean(tools['loss_function_pro'](classification_head, type_protein_pt.to(tools['valid_device'])) * sample_weight_pt)
weighted_loss_sum=class_loss+position_loss
"""
if configs.supcon.apply and warm_starting:
supcon_loss = tools['loss_function_supcon'](
projection_head,
configs.supcon.temperature,
configs.supcon.n_pos)
weighted_loss_sum += configs.supcon.weight * supcon_loss
"""
test_loss += weighted_loss_sum.item()
test_position_loss += position_loss.item()
test_class_loss += class_loss.item()
# label = torch.argmax(label_1hot, dim=1)
# type_pred = torch.argmax(type_probab, dim=1)
# accuracy.update(type_pred.detach(), label.detach().to(tools['valid_device']))
# macro_f1_score.update(type_pred.detach(), label.detach().to(tools['valid_device']))
# f1_score.update(type_pred.detach(), label.detach().to(tools['valid_device']))
test_loss = test_loss / num_batches
test_position_loss = test_position_loss / num_batches
test_class_loss = test_class_loss / num_batches
# epoch_acc = np.array(accuracy.compute().cpu())
# epoch_macro_f1 = macro_f1_score.compute().cpu().item()
# epoch_f1 = np.array(f1_score.compute().cpu())
# acc_cs = cs_correct / cs_num
return test_loss,test_class_loss,test_position_loss
def frag2protein(data_dict, tools):
overlap=tools['frag_overlap']
# no_overlap=tools['max_len']-2-overlap
for id_protein in data_dict.keys():
id_frag_list = data_dict[id_protein]['id_frag']
seq_protein=""
motif_logits_protein=np.array([])
motif_target_protein=np.array([])
for i in range(len(id_frag_list)):
id_frag = id_protein+"@"+str(i)
ind = id_frag_list.index(id_frag)
seq_frag = data_dict[id_protein]['seq_frag'][ind]
target_frag = data_dict[id_protein]['target_frag'][ind]
motif_logits_frag = data_dict[id_protein]['motif_logits'][ind]
l=len(seq_frag)
if i==0:
seq_protein=seq_frag
motif_logits_protein=motif_logits_frag[:,:l]
motif_target_protein=target_frag[:,:l]
else:
seq_protein = seq_protein + seq_frag[overlap:]
# x_overlap = np.maximum(motif_logits_protein[:,-overlap:], motif_logits_frag[:,:overlap])
x_overlap = (motif_logits_protein[:,-overlap:] + motif_logits_frag[:,:overlap])/2
motif_logits_protein = np.concatenate((motif_logits_protein[:,:-overlap], x_overlap, motif_logits_frag[:,overlap:l]),axis=1)
motif_target_protein = np.concatenate((motif_target_protein, target_frag[:,overlap:l]), axis=1)
data_dict[id_protein]['seq_protein']=seq_protein
data_dict[id_protein]['motif_logits_protein']=motif_logits_protein
data_dict[id_protein]['motif_target_protein']=motif_target_protein
return data_dict
def evaluate_protein(dataloader, tools):
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
# model.eval().cuda()
tools['net'].eval().to(tools["valid_device"])
n=tools['num_classes']
customlog(tools["logfilepath"], f'number of evaluateion steps: {len(dataloader)}\n')
print(f'number of evaluateion steps: {len(dataloader)}\n')
# cutoff = tools['cutoff']
data_dict={}
with torch.no_grad():
# for batch, (id, id_frags, seq_frag, target_frag, type_protein) in enumerate(dataloader):
for batch, (id_tuple, id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple, sample_weight_tuple, pos_neg) in enumerate(dataloader):
# id_frags_list, seq_frag_tuple, target_frag_tuple = make_buffer(id_frags, seq_frag, target_frag)
id_frags_list, seq_frag_tuple, target_frag_pt, type_protein_pt = make_buffer(id_frag_list_tuple, seq_frag_list_tuple, target_frag_nplist_tuple, type_protein_pt_tuple)
encoded_seq=tokenize(tools, seq_frag_tuple)
if type(encoded_seq)==dict:
for k in encoded_seq.keys():
encoded_seq[k]=encoded_seq[k].to(tools['valid_device'])
else:
encoded_seq=encoded_seq.to(tools['valid_device'])
classification_head, motif_logits, projection_head = tools['net'](encoded_seq, id_tuple, id_frags_list, seq_frag_tuple, None, False)
#remove on 5/3/2024 becuase has one in Encoder
m=torch.nn.Sigmoid()
motif_logits = m(motif_logits)
classification_head = m(classification_head)
x_frag = np.array(motif_logits.cpu()) #[batch, head, seq]
y_frag = np.array(target_frag_pt.cpu()) #[batch, head, seq]
x_pro = np.array(classification_head.cpu()) #[sample, n]
y_pro = np.array(type_protein_pt.cpu()) #[sample, n]
for i in range(len(id_frags_list)):
id_protein=id_frags_list[i].split('@')[0]
j= id_tuple.index(id_protein)
if id_protein in data_dict.keys():
data_dict[id_protein]['id_frag'].append(id_frags_list[i])
data_dict[id_protein]['seq_frag'].append(seq_frag_tuple[i])
data_dict[id_protein]['target_frag'].append(y_frag[i]) #[[head, seq], ...]
data_dict[id_protein]['motif_logits'].append(x_frag[i]) #[[head, seq], ...]
else:
data_dict[id_protein]={}
data_dict[id_protein]['id_frag']=[id_frags_list[i]]
data_dict[id_protein]['seq_frag']=[seq_frag_tuple[i]]
data_dict[id_protein]['target_frag']=[y_frag[i]]
data_dict[id_protein]['motif_logits']=[x_frag[i]]
data_dict[id_protein]['type_pred']=x_pro[j]
data_dict[id_protein]['type_target']=y_pro[j]
data_dict = frag2protein(data_dict, tools)
# IoU_difcut=np.zeros([n, 9])
# FDR_frag_difcut=np.zeros([1,9])
IoU_pro_difcut=np.zeros([n, 9]) #just for nuc and nuc_export
# FDR_pro_difcut=np.zeros([1,9])
result_pro_difcut=np.zeros([n,6,9])
cs_acc_difcut=np.zeros([n, 9])
classname=["Nucleus", "ER", "Peroxisome", "Mitochondrion", "Nucleus_export",
"SIGNAL", "chloroplast", "Thylakoid"]
criteria=["roc_auc_score", "average_precision_score", "matthews_corrcoef",
"recall_score", "precision_score", "f1_score"]
cutoffs=[x / 10 for x in range(1, 10)]
cut_dim=0
for cutoff in cutoffs:
scores=get_scores(tools, cutoff, n, data_dict)
IoU_pro_difcut[:,cut_dim]=scores['IoU_pro']
result_pro_difcut[:,:,cut_dim]=scores['result_pro']
cs_acc_difcut[:,cut_dim]=scores['cs_acc']
cut_dim+=1
customlog(tools["logfilepath"], f"===========================================\n")
customlog(tools["logfilepath"], f" Jaccard Index (protein): \n")
IoU_pro_difcut=pd.DataFrame(IoU_pro_difcut,columns=cutoffs,index=classname)
customlog(tools["logfilepath"], IoU_pro_difcut.__repr__())
# IoU_pro_difcut.to_csv(tools["logfilepath"],mode='a',sep="\t")
customlog(tools["logfilepath"], f"===========================================\n")
# customlog(tools["logfilepath"], f"===========================================\n")
customlog(tools["logfilepath"], f" cs acc: \n")
cs_acc_difcut=pd.DataFrame(cs_acc_difcut,columns=cutoffs,index=classname)
customlog(tools["logfilepath"], cs_acc_difcut.__repr__())
customlog(tools["logfilepath"], f"===========================================\n")
for i in range(len(classname)):
customlog(tools["logfilepath"], f" Class prediction performance ({classname[i]}): \n")
tem = pd.DataFrame(result_pro_difcut[i],columns=cutoffs,index=criteria)
customlog(tools["logfilepath"], tem.__repr__())
# tem.to_csv(tools["logfilepath"],mode='a',sep="\t")
def get_scores(tools, cutoff, n, data_dict):
cs_num = np.zeros(n)
cs_correct = np.zeros(n)
cs_acc = np.zeros(n)
# TP_frag=np.zeros(n)
# FP_frag=np.zeros(n)
# FN_frag=np.zeros(n)
# #Intersection over Union (IoU) or Jaccard Index
# IoU = np.zeros(n)
# Negtive_detect_num=0
# Negtive_num=0
TPR_pro=np.zeros(n)
FPR_pro=np.zeros(n)
FNR_pro=np.zeros(n)
IoU_pro = np.zeros(n)
# Negtive_detect_pro=0
# Negtive_pro=0
result_pro=np.zeros([n,6])
for head in range(n):
x_list=[]
y_list=[]
for id_protein in data_dict.keys():
x_pro = data_dict[id_protein]['type_pred'][head] #[1]
y_pro = data_dict[id_protein]['type_target'][head] #[1]
x_list.append(x_pro)
y_list.append(y_pro)
if y_pro==1:
x_frag = data_dict[id_protein]['motif_logits_protein'][head] #[seq]
y_frag = data_dict[id_protein]['motif_target_protein'][head]
# Negtive_pro += np.sum(np.max(y)==0)
# Negtive_detect_pro += np.sum((np.max(y)==0) * (np.max(x>=cutoff)==1))
TPR_pro[head] += np.sum((x_frag>=cutoff) * (y_frag==1))/np.sum(y_frag==1)
FPR_pro[head] += np.sum((x_frag>=cutoff) * (y_frag==0))/np.sum(y_frag==0)
FNR_pro[head] += np.sum((x_frag<cutoff) * (y_frag==1))/np.sum(y_frag==1)
# x_list.append(np.max(x))
# y_list.append(np.max(y))
cs_num[head] += np.sum(y_frag==1)>0
if np.sum(y_frag==1)>0:
cs_correct[head] += (np.argmax(x_frag) == np.argmax(y_frag))
pred=np.array(x_list)
target=np.array(y_list)
result_pro[head,0] = roc_auc_score(target, pred)
result_pro[head,1] = average_precision_score(target, pred)
result_pro[head,2] = matthews_corrcoef(target, pred>=cutoff)
result_pro[head,3] = recall_score(target, pred>=cutoff)
result_pro[head,4] = precision_score(target, pred>=cutoff)
result_pro[head,5] = f1_score(target, pred>=cutoff)
for head in range(n):
# IoU[head] = TP_frag[head] / (TP_frag[head] + FP_frag[head] + FN_frag[head])
IoU_pro[head] = TPR_pro[head] / (TPR_pro[head] + FPR_pro[head] + FNR_pro[head])
cs_acc[head] = cs_correct[head] / cs_num[head]
# FDR_frag = Negtive_detect_num / Negtive_num
# FDR_pro = Negtive_detect_pro / Negtive_pro
scores={"IoU_pro":IoU_pro, #[n]
"result_pro":result_pro, #[n, 6]
"cs_acc": cs_acc} #[n]
return scores
def debug_dataloader(train_loader):
for batch in train_loader:
# id_batch, fragments_batch, target_frags_batch, weights_batch = batch
(prot_id, id_frag_list, seq_frag_list, target_frag_nplist, type_protein_pt, sample_weight,pos_neg) = batch
# id, type_protein = batch
# print(len(id_batch))
# print(len(fragments_batch))
# print(np.array(target_frags_batch).shape)
# print(len(weights_batch))
print("==========================")
print("==========================")
#print(type(prot_id))
print(prot_id)
print(pos_neg)
break
def main(config_dict, args,valid_batch_number, test_batch_number):
configs = load_configs(config_dict,args)
if type(configs.fix_seed) == int:
torch.manual_seed(configs.fix_seed)
torch.random.manual_seed(configs.fix_seed)
np.random.seed(configs.fix_seed)
torch.cuda.empty_cache()
curdir_path, result_path, checkpoint_path, logfilepath = prepare_saving_dir(configs,args.config_path)
train_writer, valid_writer = prepare_tensorboard(result_path)
npz_file = os.path.join(curdir_path, "targetp_data.npz")
seq_file = os.path.join(curdir_path, "idmapping_2023_08_25.tsv")
customlog(logfilepath, f'use k-fold index: {valid_batch_number}\n')
if configs.train_settings.dataloader=="batchsample":
dataloaders_dict = prepare_dataloader_batchsample(configs, valid_batch_number, test_batch_number)
elif configs.train_settings.dataloader=="clean":
dataloaders_dict = prepare_dataloader_clean(configs, valid_batch_number, test_batch_number)
#debug_dataloader(dataloaders_dict["train"]) #981
customlog(logfilepath, "Done Loading data\n")
customlog(logfilepath, f'number of steps for training data: {len(dataloaders_dict["train"])}\n')
customlog(logfilepath, f'number of steps for valid data: {len(dataloaders_dict["valid"])}\n')
customlog(logfilepath, f'number of steps for test data: {len(dataloaders_dict["test"])}\n')
print(f'number of steps for training data: {len(dataloaders_dict["train"])}\n')
print(f'number of steps for valid data: {len(dataloaders_dict["valid"])}\n')
print(f'number of steps for test data: {len(dataloaders_dict["test"])}\n')
#debug_dataloader(dataloaders_dict["train"]) #981
tokenizer = prepare_tokenizer(configs, curdir_path)
customlog(logfilepath, "Done initialize tokenizer\n")
#debug_dataloader(dataloaders_dict["train"]) #981
if hasattr(configs.train_settings,"MLM") and configs.train_settings.MLM.enable:
masked_lm_data_collator = MaskedLMDataCollator(tokenizer, mlm_probability=configs.train_settings.MLM.mask_ratio)
else:
masked_lm_data_collator=None
"""
#for debug
config_path = "/data/duolin/MUTargetCLEAN/MUTarget-main/config.yaml"
with open(config_path) as file:
config_dict = yaml.full_load(file)
configs = load_configs(config_dict)
#debug_dataloader(dataloaders_dict["train"]) #981 after prepare_models become 936
"""
encoder = prepare_models(configs, logfilepath, curdir_path)
#debug_dataloader(dataloaders_dict["train"]) #936 after prepare_models become 936 , if use same config, 1575!
print("Done initialize model\n")
customlog(logfilepath, "Done initialize model\n")
optimizer, scheduler = prepare_optimizer(encoder, configs, len(dataloaders_dict["train"]), logfilepath)
if configs.optimizer.mode == 'skip':
scheduler = optimizer
customlog(logfilepath, 'preparing optimizer is done\n')
if args.predict !=1:
encoder, start_epoch = load_checkpoints(configs, optimizer, scheduler, logfilepath, encoder)
# w=(torch.ones([9,1,1])*5).to(configs.train_settings.device)
w = torch.tensor(configs.train_settings.loss_pos_weight, dtype=torch.float32).to(configs.train_settings.device)
#debug_dataloader(dataloaders_dict["train"]) #936 after call dataloaders_dict['train']
tools = {
'frag_overlap': configs.encoder.frag_overlap,
'cutoffs': configs.predict_settings.cutoffs,
'composition': configs.encoder.composition,
'max_len': configs.encoder.max_len,
'tokenizer': tokenizer,
'prm4prmpro': configs.encoder.prm4prmpro,
'net': encoder,
'train_loader': dataloaders_dict["train"],
'valid_loader': dataloaders_dict["valid"],
'test_loader': dataloaders_dict["test"],
'train_device': configs.train_settings.device,
'valid_device': configs.valid_settings.device,
'train_batch_size': configs.train_settings.batch_size,
'valid_batch_size': configs.valid_settings.batch_size,
'optimizer': optimizer,
# 'loss_function': torch.nn.CrossEntropyLoss(reduction="none"),
'loss_function': torch.nn.BCEWithLogitsLoss(pos_weight=w, reduction="mean"),
'pos_weight': w,
#'loss_function': torch.nn.BCELoss(reduction="none"),
#'loss_function_pro': torch.nn.BCELoss(reduction="none"),
'loss_function_pro': torch.nn.BCEWithLogitsLoss(reduction="none"),
'loss_function_supcon': SupConHardLoss, # Yichuan
'checkpoints_every': configs.checkpoints_every,
'scheduler': scheduler,
'result_path': result_path,
'checkpoint_path': checkpoint_path,
'logfilepath': logfilepath,
'num_classes': configs.encoder.num_classes,
'masked_lm_data_collator': masked_lm_data_collator,
}
if args.predict !=1:
customlog(logfilepath, f'number of train steps per epoch: {len(tools["train_loader"])}\n')
customlog(logfilepath, "Start training...\n")
best_valid_loss = np.inf
global global_step
global_step=0
if configs.train_settings.dataloader=="clean":
total_steps_per_epoch = int(len(tools["train_loader"].dataset.samples)/configs.train_settings.batch_size)
for epoch in range(start_epoch, configs.train_settings.num_epochs + 1):
warm_starting = False
if epoch < configs.supcon.warm_start:
warm_starting = True
if epoch ==0:
print('== Warm Start Began ==')
customlog(logfilepath,f"== Warm Start Began ==\n")
if epoch == configs.supcon.warm_start:
best_valid_loss = np.inf #reset best_valid_loss when warmend ends
warm_starting = False
print('== Warm Start Finished ==')
customlog(logfilepath,f"== Warm Start Finished ==\n")
tools['epoch'] = epoch
if (configs.train_settings.dataloader == "clean" and global_step % total_steps_per_epoch == 0) or configs.train_settings.dataloader != "clean":
print(f"Fold {valid_batch_number} Epoch {epoch}\n-------------------------------")
customlog(logfilepath, f"Fold {valid_batch_number} Epoch {epoch} train...\n-------------------------------\n")
start_time = time()
train_loss = train_loop(tools, configs, warm_starting,train_writer)
if configs.train_settings.dataloader != "clean":
if configs.train_settings.data_aug.enable:
tools['train_loader'].dataset.samples = tools['train_loader'].dataset.data_aug_train(tools['train_loader'].dataset.original_samples,configs,tools['train_loader'].dataset.class_weights)
else: #clean
if configs.train_settings.data_aug.enable and global_step % total_steps_per_epoch==0:
tools['train_loader'].dataset.samples = tools['train_loader'].dataset.data_aug_train(tools['train_loader'].dataset.original_samples,configs,tools['train_loader'].dataset.class_weights)
train_writer.add_scalar('epoch loss',train_loss,global_step=epoch)
end_time = time()
if epoch % configs.valid_settings.do_every == 0 and epoch != 0:
customlog(logfilepath, f'Epoch {epoch}: train loss: {train_loss:>5f}\n')
print(f'Epoch {epoch}: train loss: {train_loss:>5f}\n')
print(f"Fold {valid_batch_number} Epoch {epoch} validation...\n-------------------------------\n")
customlog(logfilepath, f"Fold {valid_batch_number} Epoch {epoch} validation...\n-------------------------------\n")
start_time = time()
dataloader = tools["valid_loader"]
valid_loss,valid_class_loss,valid_position_loss = test_loop(tools, dataloader,train_writer,valid_writer,configs) #In test loop, never test supcon loss
valid_writer.add_scalar('epoch loss',valid_loss,global_step=epoch)
valid_writer.add_scalar('epoch class_loss',valid_class_loss,global_step=epoch)
valid_writer.add_scalar('epoch position_loss',valid_position_loss,global_step=epoch)
customlog(logfilepath,f'Epoch {epoch}: valid loss:{valid_loss:>5f}\n')
customlog(logfilepath,f'Epoch {epoch}: valid_class_loss:{valid_class_loss:>5f}\tvalid_position_loss:{valid_position_loss:>5f}\n')
print(f'Epoch {epoch}: valid loss:{valid_loss:>5f}\n')
print(f'Epoch {epoch}: valid_class_loss:{valid_class_loss:>5f}\tvalid_position_loss:{valid_position_loss:>5f}\n')
end_time = time()
if warm_starting: #in warm_starting only supcon loss, and train_loss
if train_loss < best_valid_loss:
customlog(logfilepath, f"Epoch {epoch}: train loss {train_loss} smaller than best loss {best_valid_loss}\n-------------------------------\n")
best_valid_loss = train_loss
model_path = os.path.join(tools['checkpoint_path'], f'best_model.pth')
customlog(logfilepath, f"Epoch {epoch}: A better checkpoint is saved into {model_path} \n-------------------------------\n")
save_checkpoint(epoch, model_path, tools)
else:
if valid_loss < best_valid_loss:
customlog(logfilepath, f"Epoch {epoch}: valid loss {valid_loss} smaller than best loss {best_valid_loss}\n-------------------------------\n")
best_valid_loss = valid_loss
model_path = os.path.join(tools['checkpoint_path'], f'best_model.pth')
customlog(logfilepath, f"Epoch {epoch}: A better checkpoint is saved into {model_path} \n-------------------------------\n")
save_checkpoint(epoch, model_path, tools)
if args.predict==1:
if os.path.exists(configs.resume.resume_path):
model_path = configs.resume.resume_path
else:
model_path = os.path.join(tools['checkpoint_path'], f'best_model.pth')
customlog(logfilepath, f"Loading checkpoint from {model_path}\n")
model_checkpoint = torch.load(model_path, map_location='cpu')
tools['net'].load_state_dict(model_checkpoint['model_state_dict'])
customlog(logfilepath, f"Fold {valid_batch_number} test\n-------------------------------\n")
start_time = time()
dataloader = tools["test_loader"]
evaluate_protein(dataloader, tools)
train_writer.close()
valid_writer.close()
end_time = time()
del tools, encoder, dataloaders_dict, optimizer, scheduler
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch CPM')
parser.add_argument("--config_path", help="The location of config file", default='./config.yaml')
parser.add_argument("--predict", type=int, help="predict:1 no training, call evaluate_protein; predict:0 call training loop", default=0)
parser.add_argument("--result_path", default=None,
help="result_path, if setted by command line, overwrite the one in config.yaml, "
"by default is None")
parser.add_argument("--resume_path", default=None,
help="if set, overwrite the one in config.yaml, by default is None")
args = parser.parse_args()
config_path = args.config_path
with open(config_path) as file:
config_dict = yaml.full_load(file)
for i in range(1):
valid_num = i
if valid_num == 4:
test_num = 0
else:
test_num = valid_num+1
main(config_dict, args,valid_num, test_num)
break