-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_summary.py
72 lines (62 loc) · 1.99 KB
/
model_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from torchinfo import summary
from model import *
import torch
if __name__ == '__main__':
class Config:
class AdapterH:
enable = False
num_end_adapter_layers = 12
module_type = "MLP1"
class LoRA:
enable = False
esm_num_end_lora = 16
r = 8
alpha = 32
dropout = 0.05
class FineTuning:
enable = False
unfix_last_layer = 2
adapter_h = AdapterH()
lora = LoRA()
fine_tuning = FineTuning()
tune_ESM_table = False
encoder_name = "esm2_t33_650M_UR50D"
projection_head_name = "LayerNorm"
hidden_dim = 512
out_dim = 128
drop_out = 0.1
configs = Config()
sequence_length = 1280
batch_size = 1
x = torch.randint(0, 20, (batch_size, sequence_length), dtype=torch.long)
modes = ['default', 'adapter_h', 'lora', 'finetune']
for mode in modes:
if mode == 'adapter_h':
configs.adapter_h.enable = True
configs.lora.enable = False
configs.fine_tuning.enable = False
elif mode == 'lora':
configs.adapter_h.enable = False
configs.lora.enable = True
configs.fine_tuning.enable = False
elif mode == 'finetune':
configs.adapter_h.enable = False
configs.lora.enable = False
configs.fine_tuning.enable = True
else: # default
configs.adapter_h.enable = False
configs.lora.enable = False
configs.fine_tuning.enable = False
encoder, projection_head = prepare_models(configs, log_path=None)
print(f"\nEncoder Summary ({mode} mode):")
try:
summary(encoder, input_data=x)
except Exception as e:
print(f"Error in {mode} mode: {e}")
print("\nProjection Head Summary:")
summary(projection_head, input_size=(1, 1280))
"""
# Colab
!pip install torchinfo
!python ./model_summary.py
"""