-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
41 lines (38 loc) · 1.54 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
https://github.com/tttianhao/CLEAN/blob/main/app/src/CLEAN/losses.py
"""
import torch
import torch.nn.functional as F
def SupConHardLoss(model_emb, temp, n_pos):
'''
return the SupCon-Hard loss
features:
model output embedding, dimension [bsz, n_all, out_dim],
where bsz is batchsize,
n_all is anchor, pos, neg (n_all = 1 + n_pos + n_neg)
and out_dim is embedding dimension
temp:
temperature
n_pos:
number of positive examples per anchor
'''
# l2 normalize every embedding
features = F.normalize(model_emb, dim=-1, p=2)
# features_T is [bsz, outdim, n_all], for performing batch dot product
features_T = torch.transpose(features, 1, 2)
# anchor is the first embedding
anchor = features[:, 0]
# anchor is the first embedding
anchor_dot_features = torch.bmm(anchor.unsqueeze(1), features_T) / temp
# anchor_dot_features now [bsz, n_all], contains
anchor_dot_features = anchor_dot_features.squeeze(1)
# deduct by max logits, which will be 1/temp since features are L2 normalized
logits = anchor_dot_features - 1 / temp
# the exp(z_i dot z_a) excludes the dot product between itself
# exp_logits is of size [bsz, n_pos+n_neg]
exp_logits = torch.exp(logits[:, 1:])
exp_logits_sum = n_pos * torch.log(exp_logits.sum(1)) # size [bsz], scale by n_pos
pos_logits_sum = logits[:, 1:n_pos + 1].sum(1) # sum over all (anchor dot pos)
log_prob = (pos_logits_sum - exp_logits_sum) / n_pos
loss = - log_prob.mean()
return loss