forked from wkentaro/labelme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabelme2voc.py
executable file
·117 lines (100 loc) · 4.21 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObjectVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_cls_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.npy')
out_clsp_file = osp.join(
args.output_dir, 'SegmentationClassPNG', base + '.png')
out_clsv_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
out_ins_file = osp.join(
args.output_dir, 'SegmentationObject', base + '.npy')
out_insp_file = osp.join(
args.output_dir, 'SegmentationObjectPNG', base + '.png')
out_insv_file = osp.join(
args.output_dir,
'SegmentationObjectVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
cls, ins = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
type='instance',
)
ins[cls == -1] = 0 # ignore it.
# class label
labelme.utils.lblsave(out_clsp_file, cls)
np.save(out_cls_file, cls)
clsv = labelme.utils.draw_label(
cls, img, class_names, colormap=colormap)
PIL.Image.fromarray(clsv).save(out_clsv_file)
# instance label
labelme.utils.lblsave(out_insp_file, ins)
np.save(out_ins_file, ins)
instance_ids = np.unique(ins)
instance_names = [str(i) for i in range(max(instance_ids) + 1)]
insv = labelme.utils.draw_label(ins, img, instance_names)
PIL.Image.fromarray(insv).save(out_insv_file)
if __name__ == '__main__':
main()