forked from wkentaro/labelme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabelme2voc.py
executable file
·133 lines (114 loc) · 4.35 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
try:
import lxml.builder
import lxml.etree
except ImportError:
print('Please install lxml:\n\n pip install lxml\n')
sys.exit(1)
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'Annotations'))
os.makedirs(osp.join(args.output_dir, 'AnnotationsVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
data = json.load(f)
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_xml_file = osp.join(
args.output_dir, 'Annotations', base + '.xml')
out_viz_file = osp.join(
args.output_dir, 'AnnotationsVisualization', base + '.jpg')
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
maker = lxml.builder.ElementMaker()
xml = maker.annotation(
maker.folder(),
maker.filename(base + '.jpg'),
maker.database(), # e.g., The VOC2007 Database
maker.annotation(), # e.g., Pascal VOC2007
maker.image(), # e.g., flickr
maker.size(
maker.height(str(img.shape[0])),
maker.width(str(img.shape[1])),
maker.depth(str(img.shape[2])),
),
maker.segmented(),
)
bboxes = []
labels = []
for shape in data['shapes']:
if shape['shape_type'] != 'rectangle':
print('Skipping shape: label={label}, shape_type={shape_type}'
.format(**shape))
continue
class_name = shape['label']
class_id = class_names.index(class_name)
(xmin, ymin), (xmax, ymax) = shape['points']
bboxes.append([xmin, ymin, xmax, ymax])
labels.append(class_id)
xml.append(
maker.object(
maker.name(shape['label']),
maker.pose(),
maker.truncated(),
maker.difficult(),
maker.bndbox(
maker.xmin(str(xmin)),
maker.ymin(str(ymin)),
maker.xmax(str(xmax)),
maker.ymax(str(ymax)),
),
)
)
captions = [class_names[l] for l in labels]
viz = labelme.utils.draw_instances(
img, bboxes, labels, captions=captions
)
PIL.Image.fromarray(viz).save(out_viz_file)
with open(out_xml_file, 'wb') as f:
f.write(lxml.etree.tostring(xml, pretty_print=True))
if __name__ == '__main__':
main()