forked from AkatsukiCC/huawei2019-with-visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator2.py
824 lines (808 loc) · 34.1 KB
/
simulator2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
#-*- encoding=utf8 -*-
import sys
import numpy as np
import cv2 as cv
np.random.seed(951105)
TIME = [0]
CARDISTRIBUTION = [0,0,0]
CARNAMESPACE,ROADNAMESPACE,CROSSNAMESPACE = [],[],[]
CROSSDICT,CARDICT,ROADDICT ={},{},{}
class CAR(object):
def __init__(self,id_,from_,to_,speed_,planTime_):
# **** statistic parameters ****#
self.id_, self.from_, self.to_, self.speed_, self.planTime_ = id_, from_, to_, speed_, -1
self.carColor = [int(value) for value in np.random.random_integers(0, 255, [3])]
# **** dynamic parameters ****#
self.state,self.x,self.y = 0,0,0
self.presentRoad, self.nextCrossId = None,self.from_
self.deltaX,self.deltaY=0,0
self.wait = False
self.route,self.routeIndex = None,None
#
# simulate initialization
#
def simulateInit(self,planTime,route):
self.planTime_,self.route,self.routeIndex = planTime,route,0
#
# dynamic param update
#
def updateDynamic(self,state,x=None,y=None,presentRoad=None,roadSpeed=None,nextCrossId=None):
# car not in carport of car is ready to go
if self.state != 0 or presentRoad is not None:
self.state = state
if presentRoad is not None and self.state != 0 and self.routeIndex < self.route.__len__():
self.routeIndex += 1
self.x = x if x is not None else self.x
self.y = y if y is not None else self.y
self.presentRoad = presentRoad if presentRoad is not None else self.presentRoad
if nextCrossId is not None:
self.nextCrossId = nextCrossId
toX, toY = CROSSDICT[self.to_].__loc__()
nextCrossX, nextCrossY = CROSSDICT[nextCrossId].__loc__()
self.deltaX, self.deltaY = toX - nextCrossX, toY - nextCrossY
# show statistic parameters
def __id__(self):
return self.id_
def __from__(self):
return self.from_
def __to__(self):
return self.to_
def __speed__(self):
return self.speed_
def __planTime__(self):
return self.planTime_
def __carColor__(self):
return self.carColor
#
# show dynamic parameters
#
def __state__(self):
return self.state
def __x__(self):
return self.x
def __y__(self):
return self.y
def __presentRoad__(self):
return self.presentRoad
def __nextCrossId__(self):
return self.nextCrossId
def __deltaX__(self):
return self.deltaX
def __deltaY__(self):
return self.deltaY
def __wait__(self):
return self.wait
def __route__(self):
return self.route
def __routeIndex__(self):
return self.routeIndex
#
# show some important info
#
def __v__(self):
return min(self.speed_,ROADDICT[self.presentRoad].__speed__())
def __distance__(self):
return abs(self.deltaX)+abs(self.deltaY)
def __nextRoad__(self):
try:
return self.route[self.routeIndex]
except:
return -1
class ROAD(object):
def __init__(self,id_, length_, speed_, channel_, from_, to_, isDuplex_):
# **** statistic parameters ****#
self.id_, self.length_, self.speed_, self.channel_, self.from_, self.to_, self.isDuplex_ = \
id_, length_, speed_, channel_, from_, to_, isDuplex_
self.carCapcity = self.channel_ * self.length_
# **** dynamic parameters ****#
# absolute bucket
self.forwardBucket = {i: [None for j in range(self.channel_)] for i in range(self.length_)}
self.backwardBucket = {i: [None for j in range(self.channel_)] for i in
range(self.length_)} if self.isDuplex_ else None
self.fx, self.fy, self.bx, self.by, self.forwardNum, self.backwardNum = [0], [0], [0], [0], [0], [0]
self.forwardDone, self.backwardDone = [False], [False]
# relative bucket
self.provideBucket, self.receiveBucket = None, None
self.px, self.py, self.provideNum, self.receiveNum = None, None, None, None
self.provideDone = None
#
# determine relative bucket
#
def chooseAbsoluteBucket(self,crossId,pr):
if crossId == self.from_ and pr == 'provide':
return 'backward'
elif crossId == self.from_ and pr == 'receive':
return 'forward'
elif crossId == self.to_ and pr == 'provide':
return 'forward'
elif crossId == self.to_ and pr == 'receive':
return 'backward'
else:
print("Keywords mistake in CAR.chooseAbsoluteBucket()")
def setBucket(self,crossId):
bucket = self.chooseAbsoluteBucket(crossId, 'provide')
if bucket == 'forward':
self.provideBucket, self.px, self.py, self.provideDone, self.provideNum = \
[self.forwardBucket, self.fx, self.fy, self.forwardDone, self.forwardNum]
if self.isDuplex_:
self.receiveBucket, self.receiveNum = \
self.backwardBucket, self.backwardNum
else:
self.receiveBucket, self.receiveNum = None, None
else:
self.receiveBucket, self.receiveNum = \
self.forwardBucket, self.forwardNum
if self.isDuplex_:
self.provideBucket, self.px, self.py, self.provideDone, self.provideNum = \
self.backwardBucket, self.bx, self.by, self.backwardDone, self.backwardNum
else:
self.provideBucket, self.px, self.py, self.provideDone, self.provideNum = \
None, None, None, None, None
#
# stepInitial
#
def stepInit(self):
# dynamic param initialization
self.fx, self.fy, self.bx, self.by = [0], [0], [0], [0]
self.forwardDone, self.backwardDone = [False], [False]
self.provideBucket, self.receiveBucket = None, None
self.px, self.py, self.provideNum, self.receiveNum = None, None, None, None
self.provideDone = None
# car state initialization
for i in range(self.length_):
for j in range(self.channel_):
if self.forwardBucket[i][j] is not None:
car = CARDICT[self.forwardBucket[i][j]]
car.updateDynamic(state=1)
if self.isDuplex_:
if self.backwardBucket[i][j] is not None:
car = CARDICT[self.backwardBucket[i][j]]
car.updateDynamic(state=1)
# first step
for channel in range(self.channel_):
self.moveInChannel(self.forwardBucket, channel)
if self.isDuplex_:
self.moveInChannel(self.backwardBucket, channel)
#
# function for bucket action
#
def moveInChannel(self,bucket,channel):
# car state: 0,1,2,3 in carport,waiting,finishing,end
# set guard
previousCar, previousState = -1, 1
for i in range(self.length_):
if bucket[i][channel] is not None:
car = CARDICT[bucket[i][channel]]
v = min(car.__speed__(),self.speed_)
if car.__state__() == 2:
previousCar, previousState = i, 2
continue
elif i - v > previousCar:
bucket[i - v][channel] = bucket[i][channel]
bucket[i][channel] = None
previousCar, previousState = i - v, 2
car.updateDynamic(state=2, x=previousCar)
elif previousState == 2:
if previousCar + 1 != i:
bucket[previousCar + 1][channel] = bucket[i][channel]
bucket[i][channel] = None
previousCar, previousState = previousCar + 1, 2
car.updateDynamic(state=2, x=previousCar)
else:
previousCar, previousState = i, 1
def findCar(self,st,end,channel,bucket):
# find car backward
for i in range(end, st, -1):
if bucket[i][channel] is not None:
return i
return -1
#
# provide car
#
def firstPriorityCar(self):
if self.provideBucket is None:
print("Please do CAR.setBucket() first!")
while self.px[0] < self.length_:
carId = self.provideBucket[self.px[0]][self.py[0]]
if carId is not None and CARDICT[carId].__state__() != 2:
car = CARDICT[carId]
left = min(car.__speed__(),self.__speed__())
# speed enough and no front car
if left > self.px[0] and self.findCar(-1, self.px[0] - 1, self.py[0], self.provideBucket) == -1:
return self.provideBucket[self.px[0]][self.py[0]]
if self.py[0] == self.channel_ - 1:
self.px[0], self.py[0] = self.px[0] + 1, 0
else:
self.py[0] += 1
self.provideDone[0] = True
return -1
def firstPriorityCarAct(self,action):
if self.provideBucket is None:
print("Please do CAR.setBucket() first!")
if action == 0:
self.provideBucket[self.px[0]][self.py[0]] = None
self.provideNum[0] -= 1
elif action == 1:
carId = self.provideBucket[self.px[0]][self.py[0]]
self.provideBucket[self.px[0]][self.py[0]] = None
self.provideBucket[0][self.py[0]] = carId
self.moveInChannel(self.provideBucket, self.py[0])
#
# receive car
#
def receiveCar(self,carId):
if self.receiveBucket is None:
print("Please do CAR.setBucket() first!")
car = CARDICT[carId]
leftX = min(self.speed_, car.__speed__()) - car.__x__()
nextCrossId = self.from_ if car.__nextCrossId__() != self.from_ else self.to_
if leftX <= 0:
car.updateDynamic(state=2,x=0)
return 1
#find front car
for i in range(self.channel_):
frontCarLoc = self.findCar(self.length_ - leftX - 1, self.length_ - 1, i, self.receiveBucket)
# if no front car
if frontCarLoc == -1:
self.receiveBucket[self.length_ - leftX][i] = carId
self.receiveNum[0] += 1
car.updateDynamic(state=2, x=self.length_ - leftX, y=i, presentRoad=self.id_, roadSpeed=self.speed_,
nextCrossId=nextCrossId)
return 0
frontCar = CARDICT[self.receiveBucket[frontCarLoc][i]]
# if frontCar.state == waiting
if frontCar.__state__() == 1:
return 2
# if frontCar.state == finish and frontCar.x != road.__length__()-1
elif frontCarLoc != self.length_ - 1:
self.receiveBucket[frontCarLoc + 1][i] = carId
self.receiveNum[0] += 1
car.updateDynamic(state=2, x=frontCarLoc + 1, y=i, presentRoad=self.id_, roadSpeed=self.speed_,
nextCrossId=nextCrossId)
return 0
# if frontCar.state == finish and frontCar.x == road.__length__()-1
else:
continue
# if road is full
car.updateDynamic(state=2, x=0)
return 1
#
# show statistic parameters
#
def __id__(self):
return self.id_
def __length__(self):
return self.length_
def __speed__(self):
return self.speed_
def __channel__(self):
return self.channel_
def __from__(self):
return self.from_
def __to__(self):
return self.to_
def __isDuplex__(self):
return self.isDuplex_
def __carCapcity__(self):
return self.carCapcity
#
# show statistic parameters
#
def __forwardBucket__(self):
return self.forwardBucket
def __backwardBucket__(self):
return self.backwardBucket
def __fx__(self):
return self.fx[0]
def __fy__(self):
return self.fy[0]
def __bx__(self):
return self.bx[0]
def __by__(self):
return self.by[0]
def __forwardNum__(self):
return self.forwardNum[0]
def __backwardNum__(self):
return self.backwardNum[0]
def __forwardDone__(self):
return self.forwardDone[0]
def __backwardDone__(self):
return self.backwardDone[0]
def __provideBucket__(self):
return self.provideBucket
def __receiveBucket__(self):
return self.receiveBucket
def __px__(self):
return self.px[0]
def __py__(self):
return self.py[0]
def __provideNum__(self):
return self.provideNum[0]
def __receiveNum__(self):
return self.receiveNum[0]
def __provideDone__(self):
return self.provideDone[0]
class CROSS(object):
def __init__(self, id_, north_, east_, south_, west_):
# **** statistic parameters ****#
self.id_ = id_
self.roadIds = [north_, east_, south_, west_]
self.carport = {}
self.left=[]
# absolute loc
self.x, self.y = 0, 0
self.mapX,self.mapY = 0,0
# priorityMap
self.directionMap = {north_: {east_: 1, south_: 2, west_: -1}, \
east_: {south_: 1, west_: 2, north_: -1}, \
south_: {west_: 1, north_: 2, east_: -1}, \
west_: {north_: 1, east_: 2, south_: -1}}
# relationship with roads
self.providerDirection, self.receiverDirection, self.validRoadDirecction = [], [], []
for index, roadId in enumerate(self.roadIds):
road = ROADDICT[roadId] if roadId != -1 else None
if road is not None and (road.__isDuplex__() or road.__to__() == self.id_):
self.providerDirection.append(index)
if road is not None and (road.__isDuplex__() or road.__from__() == self.id_):
self.receiverDirection.append(index)
if road is not None:
self.validRoadDirecction.append(index)
self.provider = [[direction, self.roadIds[direction]] for direction in self.providerDirection]
self.receiver = [self.roadIds[direction] for direction in self.receiverDirection]
self.validRoad = [self.roadIds[direction] for direction in self.validRoadDirecction]
self.provider.sort(key=takeSecond)
self.providerDirection = [self.provider[i][0] for i in range(self.provider.__len__())]
self.provider = [self.provider[i][1] for i in range(self.provider.__len__())]
# **** dynamic parameters ****#
self.readyCars = []
self.carportCarNum = 0
self.finishCarNum = 0
# **** flag ****#
self.done = False
self.update = False
# main functions
def step(self):
self.update = False
for roadId in self.validRoad:
ROADDICT[roadId].setBucket(self.id_)
# data preapre
nextCarId,nextCar,nextRoad,nextDirection =[],[],[],[]
#
# 0,1,2,3 denote north,east,south,west
#
for index in range(self.provider.__len__()):
nextCarId.append(ROADDICT[self.provider[index]].firstPriorityCar())
# if first priority car exists
if nextCarId[index]!=-1:
nextCar.append(CARDICT[nextCarId[index]])
nextRoad.append(nextCar[index].__nextRoad__())
# nextRoad == -1 => terminal
if nextRoad[index]==-1:
nextDirection.append(2)
else:
nextDirection.append(self.direction(self.provider[index],nextRoad[index]))
else:
nextCar.append(-1)
nextRoad.append(-1)
nextDirection.append(-1)
# loop
for presentRoadIndex in range(self.provider.__len__()):
while nextCar[presentRoadIndex]!=-1:
# same next road and high priority lead to conflict
provider = ROADDICT[self.provider[presentRoadIndex]]
for otherRoadIndex in range(self.provider.__len__()):
# conflict
# first priority car exists at road self.provider[otherRoadIndex]
if nextCar[otherRoadIndex] != -1 and \
self.isConflict(self.providerDirection[presentRoadIndex], nextDirection[presentRoadIndex],
self.providerDirection[otherRoadIndex], nextDirection[otherRoadIndex]):
break
if nextRoad[presentRoadIndex] == -1:
provider.firstPriorityCarAct(0)
CARDISTRIBUTION[1] -= 1
CARDISTRIBUTION[2] += 1
self.finishCarNum += 1
self.update = True
else:
nextroad_ = ROADDICT[nextRoad[presentRoadIndex]]
action = nextroad_.receiveCar(nextCar[presentRoadIndex].__id__())
if action == 2:
# waiting conflict
break
self.update = True
provider.firstPriorityCarAct(action)
nextCarId[presentRoadIndex] = provider.firstPriorityCar()
if nextCarId[presentRoadIndex] != -1:
nextCar[presentRoadIndex] = CARDICT[nextCarId[presentRoadIndex]]
nextRoad[presentRoadIndex] = nextCar[presentRoadIndex].__nextRoad__()
# nextRoad == -1 => terminal
if nextRoad[presentRoadIndex] == -1:
nextDirection[presentRoadIndex] = 2
else:
nextDirection[presentRoadIndex]= self.direction(self.provider[presentRoadIndex], nextRoad[presentRoadIndex])
else:
nextCar[presentRoadIndex] = -1
nextRoad[presentRoadIndex]= -1
nextDirection[presentRoadIndex] = -1
done = True
for fromA in range(self.provider.__len__()):
if nextCar[fromA] != -1:
done = False
self.done = done
def outOfCarport(self):
self.readyCars = self.left
self.left=[]
if TIME[0] in self.carport.keys():
self.carport[TIME[0]].sort()
self.readyCars.extend(self.carport[TIME[0]])
if self.readyCars.__len__() == 0:
return
self.readyCars.sort()
for roadId in self.receiver:
ROADDICT[roadId].setBucket(self.id_)
for i in range(self.readyCars.__len__()):
carId = self.readyCars[i]
roadId = CARDICT[carId].__nextRoad__()
road = ROADDICT[roadId]
if roadId not in self.receiver:
print("Car(%d).Road(%d) not in cross(%d).function:class.outOfCarport"%(carId,roadId,self.id_))
act = road.receiveCar(carId)
if act!=0:
self.left.append(self.readyCars[i])
else:
self.carportCarNum -= 1
CARDISTRIBUTION[0] -= 1
CARDISTRIBUTION[1] += 1
#
# other functions
#
def isConflict(self,fromA,directionA,fromB,directionB):
# -1,0,1,2,3,4,5 => guard_w,n,e,s,w,guard_n,guard_e
# -1 ,1, 2 => right left, straight
# reason why:
# direction:-1,1,2
# 0-1=-1=>3=>west,0+1=1=>east,0+2=>2=>south
# 1-1=0=>north,1+2=2=>south,1+2=3=>west
# and so...
# 0
# 3 1
# 2
#
if (fromA + directionA)%4 == (fromB + directionB)%4 and directionA < directionB:
return True
else:
return False
def direction(self,providerId,receiverId):
return self.directionMap[providerId][receiverId]
def setDone(self,bool):
self.done = bool
def setLoc(self,x,y):
self.x,self.y = x,y
def setMapLoc(self,mapX,mapY):
self.mapX,self.mapY = mapX,mapY
def roadDirection(self,roadId):
if self.roadIds[0]==roadId:
return 0
elif self.roadIds[1]==roadId:
return 1
elif self.roadIds[2]==roadId:
return 2
elif self.roadIds[3]==roadId:
return 3
else:
return -1
def carportInitial(self, timePlan, carId):
if timePlan not in self.carport.keys():
self.carport[timePlan] = [carId]
else:
self.carport[timePlan].append(carId)
self.carportCarNum += 1
#
# show statistic parameters
#
def __id__(self):
return self.id_
def __roadIds__(self):
return self.roadIds
def __providerDirection__(self):
return self.providerDirection
def __receiverDirection__(self):
return self.receiverDirection
def __validRoadDirection__(self):
return self.validRoadDirection
def __provider__(self):
return self.provider
def __receiver__(self):
return self.receiver
def __validRoad__(self):
return self.validRoad
def __x__(self):
return self.x
def __y__(self):
return self.y
def __mapX__(self):
return self.mapX
def __mapY__(self):
return self.mapY
def __done__(self):
return self.done
#
# show dynamic parameters
#
def __carportCarNum__(self):
return self.carportCarNum
def __finishCarNum__(self):
return self.finishCarNum
def __update__(self):
return self.update
#
# show some important info
#
def __loc__(self):
return self.x,self.y
def __mapLoc__(self):
return self.mapX,self.mapY
class simulation(object):
def __init__(self):
self.dead = False
def step(self):
print("time:%d"%TIME[0])
for crossId in CROSSNAMESPACE:
CROSSDICT[crossId].setDone(False)
print("pre-movement...")
for road in ROADNAMESPACE:
ROADDICT[road].stepInit()
print("while loop...")
unfinishedCross = CROSSNAMESPACE
while unfinishedCross.__len__() > 0:
self.dead = True
nextCross = []
for crossId in unfinishedCross:
cross = CROSSDICT[crossId]
cross.step()
if not cross.__done__():
nextCross.append(crossId)
if cross.__update__() or cross.__done__():
self.dead = False
unfinishedCross = nextCross
assert self.dead is False, print("dead lock in", unfinishedCross)
print("car pulling away from carport")
for i in range(CROSSNAMESPACE.__len__()):
crossId = CROSSNAMESPACE[i]
for roadId in CROSSDICT[crossId].__validRoad__():
ROADDICT[roadId].setBucket(crossId)
CROSSDICT[crossId].outOfCarport()
def simulate(self):
visualize = visualization()
visualize.crossLocGen()
while True:
self.step()
visualize.drawMap()
if CARDISTRIBUTION[2]==CARNAMESPACE.__len__():
print(CARDISTRIBUTION[2])
break
if self.dead:
break
TIME[0] +=1
class visualization(object):
def __init__(self):
self.maxX,self.maxY = 0,0
self.savePath = '../../../simulatePictures'
# ** cross param **#
self.crossRadius = 14
self.crossDistance = 150
self.crossColor = [25,200,0]
# ** road param **#
self.roadColor = [0,0,0] #black
self.roadLineType = 4
self.channelWidth = 5
self.channelDistance = 3
self.lineWidth = 2
self.time = 0
#
# cross location gen
#
def crossLocGen(self):
#**** relative location ****#
# denote the first cross as the origin of coordinates
for crossId in CROSSNAMESPACE:
CROSSDICT[crossId].setDone(False)
crossList = [CROSSNAMESPACE[0]]
minX,minY = 0,0
while(crossList.__len__()>0):
nextCrossList = []
for crossId in crossList:
presentX,presntY = CROSSDICT[crossId].__loc__()
validRoad = CROSSDICT[crossId].__validRoad__()
for roadId in validRoad:
#next cross id
nextCrossId = ROADDICT[roadId].__from__() if ROADDICT[roadId].__from__() != crossId \
else ROADDICT[roadId].__to__()
# if next cross is visited
if not CROSSDICT[nextCrossId].__done__():
# visit sets true
CROSSDICT[nextCrossId].setDone(True)
# relative location of nextcross
nextX,nextY = self.crossRelativeLoc(presentX,presntY,crossId,roadId)
# update location
CROSSDICT[nextCrossId].setLoc(nextX,nextY)
minX,minY,self.maxX,self.maxY=\
min(nextX,minX),min(nextY,minY),max(nextX,self.maxX),max(nextY,self.maxY)
nextCrossList.append(nextCrossId)
crossList = nextCrossList
self.maxX,self.maxY = (self.maxX-minX+2)*self.crossDistance,(self.maxY-minY+2)*self.crossDistance
for crossId in CROSSNAMESPACE:
x,y = CROSSDICT[crossId].__loc__()
CROSSDICT[crossId].setLoc(x-minX,y-minY)
CROSSDICT[crossId].setMapLoc((x - minX+1)*self.crossDistance, (y - minY+1)*self.crossDistance)
def crossRelativeLoc(self,x,y,crossId,roadId):
roadDirection = CROSSDICT[crossId].roadDirection(roadId)
if roadDirection==0:
return x,y-1
elif roadDirection==1:
return x+1,y
elif roadDirection==2:
return x,y+1
elif roadDirection==3:
return x-1,y
else:
print("Cross(%d) don't interact with road(%d)"%(self.id_,roadId))
#
# draw functions
#
def drawMap(self):
img = np.ones((self.maxX,self.maxY,3),np.uint8)*255
#draw road
for roadId in ROADNAMESPACE:
self.plotRoad(roadId,img)
# draw cross
for crossId in CROSSNAMESPACE:
self.plotCross(crossId,img)
# plot info
self.plotInfo(img)
cv.imwrite(self.savePath+'/%d.jpg'%TIME[0],img)
def plotCross(self,crossId,img):
x, y = CROSSDICT[crossId].__mapLoc__()
cv.circle(img,(x,y),self.crossRadius,color=self.crossColor,thickness=-1,lineType=-1)
if crossId>=10:
xx, yy = int(x - 4*self.crossRadius/5), int(y + self.crossRadius / 2)
else:
xx, yy = int(x- self.crossRadius/2), int(y + self.crossRadius / 2)
cv.putText(img,str(crossId),(xx,yy ),cv.FONT_HERSHEY_SIMPLEX,0.6,[0,0,255],2)
def plotRoad(self,roadId,img):
# get road info
road = ROADDICT[roadId]
fromX, fromY = CROSSDICT[road.__from__()].__mapLoc__()
toX, toY = CROSSDICT[road.__to__()].__mapLoc__()
# plot line
cv.line(img,(fromX, fromY),(toX, toY),color=self.roadColor,thickness=2)
# plot bucket
self.drawBucket(road,'forward',img)
if road.__isDuplex__():
self.drawBucket(road,'backward',img)
def drawBucket(self,road,lane,img):
bucket = road.__forwardBucket__() if lane !='backward' else road.__backwardBucket__()
length = road.__length__()
channel = road.__channel__()
fromX, fromY = CROSSDICT[road.__from__()].__mapLoc__()
toX, toY = CROSSDICT[road.__to__()].__mapLoc__()
XY, intervalXY, rectangleSize, channel2XY, length2XY = self.bucketDrawInitial(fromX,fromY,toX,toY,lane,length)
for i in range(length):
for j in range(channel):
xRD,yRD = int(XY[0]+rectangleSize[0]),int(XY[1]+rectangleSize[1])
if bucket[i][j] is None:
cv.rectangle(img,(int(XY[0]),int(XY[1])),(xRD,yRD),(0,0,0),1)
else:
color = CARDICT[bucket[i][j]].__carColor__()
cv.rectangle(img, (int(XY[0]), int(XY[1])),(xRD, yRD),color=color,thickness=-1)
XY[channel2XY] = XY[channel2XY] + intervalXY[channel2XY]
XY[channel2XY] = XY[channel2XY] - intervalXY[channel2XY]*channel
XY[length2XY] = XY[length2XY] + intervalXY[length2XY]
def bucketDrawInitial(self,fromX,fromY,toX,toY,lane,length):
direction = self.bucketDirection(fromX,fromY,toX,toY,lane)
unitLength = (self.crossDistance - self.crossRadius * 4) / length
if lane=='backward':
toY=fromY
toX=fromX
if direction == 'north':
XY = [fromX + self.channelDistance,toY + self.crossRadius * 2]
intervalXY = self.channelDistance + self.channelWidth , unitLength
rectangleSize = self.channelWidth , unitLength
channel2XY, length2XY = 0, 1
elif direction == 'south':
XY = [fromX - self.channelDistance - self.channelWidth,toY - self.crossRadius * 2 - unitLength]
intervalXY = -(self.channelDistance + self.channelWidth ), -unitLength
rectangleSize = self.channelWidth , unitLength
channel2XY, length2XY = 0, 1
elif direction == 'east':
XY = [toX - self.crossRadius * 2 - unitLength,fromY + self.channelDistance]
intervalXY = -unitLength, self.channelDistance + self.channelWidth
rectangleSize = unitLength, self.channelWidth
channel2XY, length2XY = 1, 0
elif direction == 'west':
XY = [toX + self.crossRadius * 2, fromY - self.channelDistance - self.channelWidth]
intervalXY = unitLength, -(self.channelDistance + self.channelWidth)
rectangleSize = unitLength, self.channelWidth
channel2XY, length2XY = 1, 0
return XY,intervalXY,rectangleSize,channel2XY,length2XY
def bucketDirection(self,fromX,fromY,toX,toY,lane):
if fromY > toY:
direction = 'north' if lane=='forward' else 'south'
elif fromY < toY:
direction = 'south' if lane == 'forward' else 'north'
elif fromX < toX:
direction = 'east' if lane == 'forward' else 'west'
else:
direction = 'west' if lane == 'forward' else 'east'
return direction
def plotInfo(self,img):
for crossId in CROSSNAMESPACE:
cross = CROSSDICT[crossId]
x,y = cross.__mapLoc__()
cn,fn = cross.__carportCarNum__(),cross.__finishCarNum__()
cv.putText(img,"%d,%d"%(cn,fn),(int(x),int(y-1.1*self.crossRadius)),\
cv.FONT_HERSHEY_SIMPLEX,0.4,[0,0,255],1)
cv.putText(img, "in the carport:%d,on the road:%d,end of the trip:%d" % (CARDISTRIBUTION[0],CARDISTRIBUTION[1],CARDISTRIBUTION[2]),(30,30), \
cv.FONT_HERSHEY_SIMPLEX, 0.6, [0, 0, 255], 2)
def takeSecond(elem):
return elem[1]
def main():
car_path = sys.argv[1]
road_path = sys.argv[2]
cross_path = sys.argv[3]
answer_path = sys.argv[4]
# ************************************* M A I N *******************************************#
# load .txt files
carInfo = open(car_path, 'r').read().split('\n')[1:]
roadInfo = open(road_path, 'r').read().split('\n')[1:]
crossInfo = open(cross_path, 'r').read().split('\n')[1:]
answerInfo = open(answer_path,'r').read().split('\n')
# *****************************Create NameSpace And Dictionary*****************************#
# create car objects
# line = (id,from,to,speed,planTime)
for line in carInfo:
id_, from_, to_, speed_, planTime_ = line.replace(' ', '').replace('\t', '')[1:-1].split(',')
CARNAMESPACE.append(int(id_))
CARDICT[int(id_)] = CAR(int(id_), int(from_), int(to_), int(speed_), int(planTime_))
# create road objects
# line = (id,length,speed,channel,from,to,isDuplex)
for line in roadInfo:
id_, length_, speed_, channel_, from_, to_, isDuplex_ = line.replace(' ', '').replace('\t', '')[1:-1].split(',')
ROADNAMESPACE.append(int(id_))
ROADDICT[int(id_)] = ROAD(int(id_), int(length_), int(speed_), int(channel_), int(from_), int(to_),
int(isDuplex_))
# create cross objects
# line = (id,north,east,south,west)
for line in crossInfo:
id_, north_, east_, south_, west_ = line.replace(' ', '').replace('\t', '')[1:-1].split(',')
CROSSNAMESPACE.append(int(id_))
CROSSDICT[int(id_)] = CROSS(int(id_), int(north_), int(east_), int(south_), int(west_))
# car route initialize
# line = (id,startTime,route)
count = 0
for i,line in enumerate(answerInfo):
if line.__len__() <3:
continue
if line[0]=='#':
continue
line=line.strip()[1:-1].split(',')
carId = int(line[0])
planTime_ = int(line[1])
route = [int(roadId) for roadId in line[2:]]
CARDICT[carId].simulateInit(planTime_,route)
count+=1
print("There are %d cars' route preinstalled"%count)
CARDISTRIBUTION[0] = CARNAMESPACE.__len__()
# **** cross initialization ****#
for carId in CARNAMESPACE:
CROSSDICT[CARDICT[carId].__from__()].carportInitial(CARDICT[carId].__planTime__(), carId)
# ****Initialization ****#
CARNAMESPACE.sort()
CROSSNAMESPACE.sort()
# simulator
simulate = simulation()
simulate.simulate()
if __name__ == "__main__":
main()
# python simulator.py ../config_11/car.txt ../config_11/road.txt ../config_11/cross.txt ../config_11/answer.txt
# python simulator.py ../config_12/car.txt ../config_12/road.txt ../config_12/cross.txt ../config_12/answer.txt