-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
409 lines (335 loc) · 12.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import copy
from distutils.version import LooseVersion
from functools import partial
from numbers import Number
from reprlib import recursive_repr
import sklearn
import torch
from torch.utils.data import dataset
import numpy as np
from scipy import sparse
from torch.nn.utils.rnn import PackedSequence
import torch.nn as nn
if LooseVersion(sklearn.__version__) >= '0.22.0':
from sklearn.utils import _safe_indexing as safe_indexing
else:
from sklearn.utils import safe_indexing
def is_pandas_ndframe(x):
return hasattr(x, 'iloc')
def indexing_none(data, i):
return None
def indexing_dict(data, i):
return {k: v[i] for k, v in data.items()}
def indexing_list_tuple_of_data(data, i, indexings=None):
if not indexings:
return [indexing(x, i) for x in data]
return [indexing(x, i, ind)
for x, ind in zip(data, indexings)]
def indexing_sparse(data,i):
data=copy.copy(data)
data = data.toarray().squeeze(0)
return data[i]
def indexing_ndframe(data, i):
if hasattr(data, 'iloc'):
data=data.copy(data)
data = {k: data[k].values.reshape(-1, 1) for k in data}
return data.iloc[i]
return indexing_dict(data, i)
def indexing_other(data, i):
if isinstance(i, (int, np.integer, slice, tuple)):
return data[i]
return safe_indexing(data, i)
def indexing_dataset(data,i):
return data[i]
def get_indexing_method(data):
if data is None:
return indexing_none
if isinstance(data, torch.utils.data.Dataset):
return indexing_dataset
if isinstance(data, dict):
return indexing_dict
if is_sparse(data):
return indexing_sparse
if isinstance(data, (list, tuple)):
try:
if isinstance(data[0],(Number,str)):
raise TypeError('Can not index data!')
indexing(data[0], 0)
indexings = [get_indexing_method(x) for x in data]
return partial(indexing_list_tuple_of_data, indexings=indexings)
except TypeError:
return indexing_other
if is_pandas_ndframe(data):
return indexing_ndframe
return indexing_other
def normalize_numpy_indices(i):
if isinstance(i, np.ndarray):
if i.dtype == bool:
i = tuple(j.tolist() for j in i.nonzero())
elif i.dtype == int:
i = i.tolist()
return i
def indexing(data, i, indexing_method=None):
i = normalize_numpy_indices(i)
if indexing_method is not None:
return indexing_method(data, i)
return get_indexing_method(data)(data, i)
def flatten(arr):
for item in arr:
if isinstance(item, (tuple, list, dict)):
yield from flatten(item)
else:
yield item
def apply_to_data(data, func, unpack_dict=False):
apply_ = partial(apply_to_data, func=func, unpack_dict=unpack_dict)
if isinstance(data, dict):
if unpack_dict:
return [apply_(v) for v in data.values()]
return {k: apply_(v) for k, v in data.items()}
if isinstance(data, (list, tuple)):
try:
return [apply_(x) for x in data]
except TypeError:
return func(data)
return func(data)
def is_sparse(x):
try:
return sparse.issparse(x) or x.is_sparse
except AttributeError:
return False
def _len(data):
if isinstance(data,(Number,str)):
raise TypeError('Can not get the lengeth of data!')
if data is None:
return 0
elif isinstance(data,torch.utils.data.Dataset):
return data.__len__()
elif is_sparse(data):
return data.shape[0]
else:
return len(data)
def get_len(data):
lens = [apply_to_data(data, _len, unpack_dict=True)]
lens = list(flatten(lens))
len_set = set(lens)
if len(len_set) != 1:
raise ValueError("Dataset does not have consistent lengths.")
return list(len_set)[0]
def is_torch_data_type(x):
# pylint: disable=protected-access
return isinstance(x, (torch.Tensor, PackedSequence))
def to_device(X, device):
if device is None:
return X
if isinstance(X, dict):
return {key: to_device(val, device) for key, val in X.items()}
if isinstance(X, (tuple, list)) and (type(X) != PackedSequence):
return type(X)(to_device(x, device) for x in X)
if isinstance(X, torch.distributions.distribution.Distribution):
return X
return X.to(device)
# def to_tensor(X, device=None, accept_sparse=False):
# to_tensor_ = partial(to_tensor, device=device)
# if is_torch_data_type(X):
# return to_device(X, device)
# if isinstance(X, dict):
# return {key: to_tensor_(val) for key, val in X.items()}
# if isinstance(X, (list, tuple)):
# try:
# indexing(X[0],0)
# return [to_tensor_(x) for x in X]
# except:
# return torch.as_tensor(np.array(X), device=device)
# if np.isscalar(X):
# return torch.as_tensor(X, device=device)
# if isinstance(X, Sequence):
# return torch.as_tensor(np.array(X), device=device)
# if isinstance(X, np.ndarray):
# return torch.as_tensor(X, device=device)
# if sparse.issparse(X):
# if accept_sparse:
# return torch.sparse_coo_tensor(
# X.nonzero(), X.data, size=X.shape).to(device)
# raise TypeError("Sparse matrices are not supported. Set "
# "accept_sparse=True to allow sparse matrices.")
#
# raise TypeError("Cannot convert this data type to a torch tensor.")
def to_numpy(X):
if isinstance(X, np.ndarray):
return X
if isinstance(X, dict):
return np.array(to_numpy(val) for key, val in X.items())
if is_pandas_ndframe(X):
return X.values
if isinstance(X, (tuple, list)):
return np.array(X)
if not is_torch_data_type(X):
raise TypeError("Cannot convert this data type to a numpy array.")
if X.is_cuda:
X = X.cpu()
if X.requires_grad:
X = X.detach()
return X.numpy()
# def to_image(X):
# if isinstance(X,Image.Image):
# return X
# else:
# X=to_numpy(X)
# X=Image.fromarray(X)
# return X
class partial:
"""New function with partial application of the given arguments
and keywords.
"""
__slots__ = "func", "args", "keywords", "__dict__", "__weakref__"
def __new__(*args, **keywords):
if not args:
raise TypeError("descriptor '__new__' of partial needs an argument")
if len(args) < 2:
raise TypeError("type 'partial' takes at least one argument")
cls, func, *args = args
if not callable(func):
raise TypeError("the first argument must be callable")
args = tuple(args)
if hasattr(func, "func"):
args = func.args + args
tmpkw = func.keywords.copy()
tmpkw.update(keywords)
keywords = tmpkw
del tmpkw
func = func.func
self = super(partial, cls).__new__(cls)
self.func = func
self.args = args
self.keywords = keywords
return self
def __call__(*args, **keywords):
if not args:
raise TypeError("descriptor '__call__' of partial needs an argument")
self, *args = args
newkeywords = self.keywords.copy()
newkeywords.update(keywords)
return self.func(*self.args, *args, **newkeywords)
def change(self,**keywords):
self.keywords.update(keywords)
return self
@recursive_repr()
def __repr__(self):
qualname = type(self).__qualname__
args = [repr(self.func)]
args.extend(repr(x) for x in self.args)
args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
if type(self).__module__ == "functools":
return f"functools.{qualname}({', '.join(args)})"
return f"{qualname}({', '.join(args)})"
def __reduce__(self):
return type(self), (self.func,), (self.func, self.args,
self.keywords or None, self.__dict__ or None)
def __setstate__(self, state):
if not isinstance(state, tuple):
raise TypeError("argument to __setstate__ must be a tuple")
if len(state) != 4:
raise TypeError(f"expected 4 items in state, got {len(state)}")
func, args, kwds, namespace = state
if (not callable(func) or not isinstance(args, tuple) or
(kwds is not None and not isinstance(kwds, dict)) or
(namespace is not None and not isinstance(namespace, dict))):
raise TypeError("invalid partial state")
args = tuple(args) # just in case it's a subclass
if kwds is None:
kwds = {}
elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
kwds = dict(kwds)
if namespace is None:
namespace = {}
self.__dict__ = namespace
self.func = func
self.args = args
self.keywords = kwds
class EMA:
"""
Implementation from https://fyubang.com/2019/06/01/ema/
"""
def __init__(self, model, decay):
self.model = model
self.decay = decay
self.shadow = {}
self.backup = {}
def load(self, ema_model):
for name, param in ema_model.named_parameters():
self.shadow[name] = param.data.clone()
def register(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def apply_shadow(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.backup[name] = param.data
param.data = self.shadow[name]
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
class class_status:
def __init__(self,y):
self.y=y
try:
self.y_arr = to_numpy(self.y)
except (AttributeError, TypeError):
self.y_arr = self.y
if self.y_arr.ndim == 2:
self.y_arr = np.array([" ".join(row.astype("str")) for row in self.y_arr])
@property
def classes(self):
classes, y_indices = np.unique(self.y_arr, return_inverse=True)
return classes
@property
def y_indices(self):
classes, y_indices = np.unique(self.y_arr, return_inverse=True)
return y_indices
@property
def num_classes(self):
classes, y_indices = np.unique(self.y_arr, return_inverse=True)
num_class = classes.shape[0]
return num_class
@property
def class_counts(self):
classes, y_indices = np.unique(self.y_arr, return_inverse=True)
class_counts = np.bincount(y_indices)
return class_counts
def _l2_normalize(d):
d /= (torch.sqrt(torch.sum(d ** 2, dim=(1, 2, 3))).reshape((-1, 1, 1, 1)) + 1e-16)
return d
def one_hot(targets, nClass,device):
logits = torch.zeros(targets.size(0), nClass).to(device)
return logits.scatter_(1, targets.unsqueeze(1).long(), 1)
class Bn_Controller:
def __init__(self):
"""
freeze_bn and unfreeze_bn must appear in pairs
"""
self.backup = {}
def freeze_bn(self, model):
assert self.backup == {}
for name, m in model.named_modules():
if isinstance(m, nn.SyncBatchNorm) or isinstance(m, nn.BatchNorm2d):
self.backup[name + '.running_mean'] = m.running_mean.data.clone()
self.backup[name + '.running_var'] = m.running_var.data.clone()
self.backup[name + '.num_batches_tracked'] = m.num_batches_tracked.data.clone()
def unfreeze_bn(self, model):
for name, m in model.named_modules():
if isinstance(m, nn.SyncBatchNorm) or isinstance(m, nn.BatchNorm2d):
m.running_mean.data = self.backup[name + '.running_mean']
m.running_var.data = self.backup[name + '.running_var']
m.num_batches_tracked.data = self.backup[name + '.num_batches_tracked']
self.backup = {}