Skip to content

Physics-informed Machine Learning with Heuristic Feedback Control Layer for Autonomous Vehicle Control.

Notifications You must be signed in to change notification settings

XianningLi/IV-2025

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Physics-informed-Machine-Learning-with-Heuristic-Feedback-Control-Layer-for-AV-Control

Physics-informed Machine Learning with Heuristic Feedback Control Layer for Autonomous Vehicle Control.

Table of Contents


Project Structure

.
├── DPCModel/                 # DPC controller files
├── HFAMPCModel/              # HFAMPC controller files
├── HFRPCModel/               # HFRPC controller files
├── RPCModel/                 # RPC controller files
├── simulation/               # Simulation scripts
├── DataSetGeneration/        # Scripts to generate training and testing data
├── results/                  # Output results and performance summaries
├── mainLaneChangingSixController.py  # Main script for testing all controllers
├── mainNumericalSimulationSingleExample.py  # Script for a single example simulation
└── PlotLoss/                 # Training loss visualization files

Controllers

This project implements the following controllers:

  1. MPC (Model Predictive Control)
  2. AMPC (Approximate MPC)
  3. HFAMPC (Heuristic Feedback AMPC)
  4. DPC (Differentiable Predictive Control)
  5. RPC (Recurrent Predictive Control)
  6. HFRPC (Heuristic Feedback RPC)

Key Features

  • Physics-Informed Learning: Combines machine learning with model-based control for enhanced generalization.
  • Heuristic Feedback Layer: Improves steady-state error and generalization.
  • Performance Comparison: Numerical and graphical analysis of computational efficiency, trajectory accuracy, and generalization capabilities.

Dependencies

To run the project, the following dependencies are required:

  • Python 3
  • numpy
  • pandas
  • matplotlib
  • torch
  • casadi
  • CUDA

Usage

  1. Generate Dataset: Use DataSetGeneration/ scripts to generate training and testing data. You can also download the dataset using the following link:
    Google Drive Dataset

  2. Train Controllers: Run training scripts in the respective model directories (e.g., RPC_train_GPU.py).

  3. Run Simulations:

    • Single example simulation: mainNumericalSimulationSingleExample.py
    • Multiple controller comparison: mainLaneChangingSixController.py
  4. Visualize Results:

    • Training loss: Training Loss over Epochs.png.

Results

  • Performance Analysis:
    • Performance comparisons are shown in Lane-Change Instance Within Training Set Boundaries.png and Closed-loop Numerical Simulation Results.png.
  • Training Loss:
    • Visualized in Training Loss over Epochs.png.

Author

Xianning Li
New York University
Email: [email protected]

About

Physics-informed Machine Learning with Heuristic Feedback Control Layer for Autonomous Vehicle Control.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages