-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbls_train_Y_noTest.m
89 lines (74 loc) · 2.74 KB
/
bls_train_Y_noTest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function [NetoutValidation,test_error_Y] = bls_train_Y_noTest(train_x,...
train_y,validation_x,WF,WeightEnhan,s,C,NumFea,NumWin,Vp_true,...
den_true,f,modes_num_vec,index_vec,index_vec_all,mean_y,std_y,...
validation_x_norm)
%
% note: built upon previously released codes (https://broadlearning.ai/)
%
% Chen and Liu 2017: Chen, C. P., & Liu, Z. (2017). Broad learning system:
% An effective and efficient incremental learning system
% without the need for deep architecture. IEEE
% transactions on neural networks and learning systems,
% 29(1), 10-24.
%
% Chen et al. 2018: Chen, C. P., Liu, Z., & Feng, S. (2018). Universal
% approximation capability of broad learning system and
% its structural variations. IEEE transactions on neural
% networks and learning systems, 30(4), 1191-1204.
%
%% training
% % tic
H1 = [train_x, 0.1 * ones(size(train_x,1),1)];
y=zeros(size(train_x,1),NumWin*NumFea);
for i=1:NumWin
WeightFea=WF{i};
A1 = H1 * WeightFea;
A1 = mapminmax(A1);
clear WeightFea;
WeightFeaSparse = sparse_bls(A1,H1,1e-3,50)';
WFSparse{i}=WeightFeaSparse;
T1 = H1 * WeightFeaSparse;
[T1,ps1] = mapminmax(T1',0,1);
T1 = T1';
ps(i)=ps1;
y(:,NumFea*(i-1)+1:NumFea*i)=T1;
end
clear H1;
clear T1;
H2 = [y, 0.1 * ones(size(y,1),1)];
T2 = H2 * WeightEnhan;
T2 = tansig(T2);
T3=[y T2];
clear H2;
clear T2;
WeightTop = (T3' * T3+eye(size(T3',1)) * (C)) \ ( T3' * train_y);
NetoutTrain = T3 * WeightTop;
clear T3;
%% validation
test_x = validation_x_norm;
HH1 = [test_x .1 * ones(size(test_x,1),1)];
yy1=zeros(size(test_x,1),NumWin*NumFea);
for i=1:NumWin
WeightFeaSparse=WFSparse{i};ps1=ps(i);
TT1 = HH1 * WeightFeaSparse;
TT1 = mapminmax('apply',TT1',ps1)';
clear WeightFeaSparse; clear ps1;
yy1(:,NumFea*(i-1)+1:NumFea*i)=TT1;
end
clear TT1;clear HH1;
HH2 = [yy1 .1 * ones(size(yy1,1),1)];
TT2 = tansig(HH2 * WeightEnhan);
TT3=[yy1 TT2];
clear HH2;clear b2;clear TT2;
NetoutValidation = TT3 * WeightTop;
clear TT3;
%% error calculation
Vs_inverted_profile_norm = NetoutValidation(:)';
% rescale
Vs_inverted_profile = zeros(size(Vs_inverted_profile_norm,1),size(Vs_inverted_profile_norm,2));
for i = 1:1:size(Vs_inverted_profile_norm,2)
Vs_inverted_profile(:,i) = (Vs_inverted_profile_norm(:,i)*std_y(i)) + mean_y(i);
end
invertedDispersions = calDispersions_2(Vs_inverted_profile,Vp_true,den_true,f,modes_num_vec,index_vec_all);
test_error_Y = sqrt(sum((invertedDispersions-validation_x).^2/length(invertedDispersions)));
NetoutValidation = Vs_inverted_profile;