forked from Pomax/bezierjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
978 lines (847 loc) · 39.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Bezier.js, for doing Bezier curve things</title>
<link rel="stylesheet" href="style.css">
</head>
<body>
<header>
<h1>Bezier.js, for doing Bezier curve things</h1>
</header>
<main>
<p>A library for performing Bezier curve computation and, if you add in your own drawing code (like the HTML canvas), drawing curves in a useful manner.</p>
<p>This library works both client side (i.e. in the browser) and server side (e.g. as a <a href="https://nodejs.org">node.js</a> module).</p>
<p>Download the library <a href="lib/bezier.js">here</a>, or head over to <a href="https://github.com/Pomax/bezierjs">Github</a> for the project page.</p>
<h2>This is an interactive API</h2>
<p>The rest of this page explains the Bezier.js API, with interactive graphics to illustrate what a function does. Because what's the point of a library for manipulating Bezier curves if you can't manipulate them? You can click-drag all the points to see how the curves behave under the different functions that can act on them.</p>
<p><strong>Basically: the graphics on this page want you to play with them. They're not static images.</strong></p>
<section id="constructor">
<h1>new Bezier(...)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
}
</script></figure>
</figures>
<p>Quadratic and cubic 2D/3D Bezier curve constructor.</p>
<p>For quadratic curves, the contructor can take either 6 or 9 numerical arguments
(for 2d and 3d curves respectively) or 3 <code>{x:(num),y:(num),z:(num)}</code> coordinate objects.
The <code>z</code> property for coordinates is optional, and controls whether the resulting curve
is 2d or 3d.</p>
<p>For cubic curves, the contructor can take either 8 or 12 numerical arguments
(for 2d and 3d curves respectively) or 4 <code>{x:(num),y:(num),z:(num)}</code> coordinate objects.
The <code>z</code> property for coordinates is optional, and controls whether the resulting curve
is 2d or 3d.</p>
</section>
<section id="constructor">
<h1>Bezier.quadraticFromPoints(p1,p2,p3,t) / Bezier.cubicFromPoints(p1,p2,p3,t,d1)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
false;
var B = {x: 100, y: 50};
var tvalues = [0.2, 0.3, 0.4, 0.5];
var curves = tvalues.map(function(t) {
return Bezier.quadraticFromPoints({x:150, y: 40}, B, {x:35, y:160}, t);
});
var draw = function() {
var offset = {x:45,y:30};
curves.forEach(function(b,i) {
drawSkeleton(b, offset, true);
setColor("rgba(0,0,0,0.2)");
drawCircle(b.points[1], 3, offset);
drawText("t="+tvalues[i], {
x: b.points[1].x + offset.x - 15,
y: b.points[1].y + offset.y - 10,
});
setRandomColor();
drawCurve(b, offset);
});
setColor("black");
drawCircle(curves[0].points[0], 3, offset);
drawCircle(curves[0].points[2], 3, offset);
drawCircle(B, 3, offset);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
false;
var p1 = {x:110, y: 50},
B = {x: 50, y: 80},
p3 = {x:135, y: 100};
var tvalues = [0.2, 0.3, 0.4, 0.5];
var curves = tvalues.map(function(t) {
return Bezier.cubicFromPoints(p1, B, p3, t);
});
var draw = function() {
var offset = {x:0,y:0};
curves.forEach(function(b,i) {
setRandomColor();
drawCurve(b, offset);
});
setColor("black");
drawCircle(curves[0].points[0], 3, offset);
drawCircle(curves[0].points[3], 3, offset);
drawCircle(B, 3, offset);
}
</script></figure>
</figures>
<p>Create a curve through three points.</p>
<p>The points p1 through p3 are required, all additional arguments are optional. In both cases <code>t</code> defaults
to <code>0.5</code> when omitted.</p>
<p>The cubic value <code>d1</code> indicates the strut length for building a cubic curve, with the full strut being
length <code>d1 * (1-t)/t</code>. If omitted, a length based on <code>B--C</code> is used.</p>
<p>The illustrations show both quadratic and cubic curves going through three fixed points, but with different
<code>t</code> values specified (0.2, 0.3, 0.4, and 0.5). For the cubic example, <code>d1</code> has not between
explicitly specified. (no skeleton is shown for the cubic curves, as the additional lines crowd the illustration
too much).</p>
</section>
<section id="getLUT">
<h1>.getLUT(steps)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
var LUT = curve.getLUT(16);
LUT.forEach(function(p) { drawCircle(p,2); });
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
var LUT = curve.getLUT(16);
LUT.forEach(function(p) { drawCircle(p,2); });
}
</script></figure>
</figures>
<p>Generates a <b>L</b>ook<b>U</b>p <b>T</b>able of coordinates on the curve, spaced at parametrically equidistance
intervals. If <code>steps</code> is given, the LUT will contain <code>steps+1</code> coordinates
representing the coordinates from <code>t=0</code> to <code>t=1</code> at interval <code>1/steps</code>.</p>
<p>If <code>steps</code> is omitted, a default value of <code>steps=100</code> is used.</p>
</section>
<section id="length">
<h1>.length()</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var arclength = curve.length();
var offset = curve.offset(-10), last=offset.length-1;
offset.forEach(function(c,idx) {
drawCurve(c);
if(idx===last) {
var p1 = curve.offset(0.95, -15);
var p2 = c.get(1);
var p3 = curve.offset(0.95, -5);
drawLine(p1,p2);
drawLine(p2,p3);
var label = ((100*arclength)|0)/100 + "px";
drawText(label, {x:p2.x+7,y:p2.y-3});
}
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100, 25, 10, 90, 110, 100, 132, 192 );
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var arclength = curve.length();
var offset = curve.offset(-10), last=offset.length-1;
offset.forEach(function(c,idx) {
drawCurve(c);
if(idx===last) {
var p1 = curve.offset(0.95, -15);
var p2 = c.get(1);
var p3 = curve.offset(0.95, -5);
drawLine(p1,p2);
drawLine(p2,p3);
var label = ((100*arclength)|0)/100 + "px";
drawText(label, {x:p2.x+7,y:p2.y-3});
}
});
}
</script></figure>
</figures>
<p>Calculates the length of this Bezier curve. Length is calculated using numerical approximation,
specifically the Legendre-Gauss quadrature algorithm.</p>
</section>
<section id="get">
<h1>.get(t) and .compute(t)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
drawPoint(curve.get(0.5));
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
drawPoint(curve.get(0.5));
}
</script></figure>
</figures>
<p>Calculates a point on the curve, for a given <code>t</code> value between 0 and 1 (inclusive).
<code>.get</code> is an alias for <code>.compute</code>. The illustration graphics show the
point for <code>t=0.5</code> highlighted on both curves.</p>
</section>
<section id="derivative">
<h1>.derivative(t)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
for(var t=0; t<=1; t+=0.1) {
var pt = curve.get(t);
var dv = curve.derivative(t);
drawLine(pt, { x: pt.x + dv.x, y: pt.y + dv.y} );
}
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
for(var t=0; t<=1; t+=0.1) {
var pt = curve.get(t);
var dv = curve.derivative(t);
drawLine(pt, { x: pt.x + dv.x, y: pt.y + dv.y} );
}
}
</script></figure>
</figures>
<p>Calculates the curve tangent at the specified <code>t</code> value. Note that this yields
a not-normalized vector <code>{x: dx, y: dy}</code>.</p>
</section>
<section id="normal">
<h1>.normal(t)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var pt, nv, d=20;
for(var t=0; t<=1; t+=0.1) {
var pt = curve.get(t);
var nv = curve.normal(t);
drawLine(pt, { x: pt.x + d*nv.x, y: pt.y + d*nv.y} );
}
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var pt, nv, d=20;
for(var t=0; t<=1; t+=0.1) {
var pt = curve.get(t);
var nv = curve.normal(t);
drawLine(pt, { x: pt.x + d*nv.x, y: pt.y + d*nv.y} );
}
}
</script></figure>
</figures>
<p>Calculates the curve normal at the specified <code>t</code> value. Note that this yields
a normalised vector <code>{x: nx, y: ny}</code>.</p>
<p>In 2d, the normal is simply the normalised tangent vector, rotated by a quarter turn. In
3d, the normal is the normalised tangent vector rotated by a quarter turn through the
tangential plane.</p>
</section>
<section id="split">
<h1>.split(t) and .split(t1,t2)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
setColor("lightgrey");
drawCurve(curve);
var c = curve.split(0.25, 0.75);
setColor("red");
drawCurve(c);
drawCircle(curve.get(0.25),3);
drawCircle(curve.get(0.75),3);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
setColor("lightgrey");
drawCurve(curve);
var c = curve.split(0.25, 0.75);
setColor("red");
drawCurve(c);
drawCircle(curve.get(0.25),3);
drawCircle(curve.get(0.75),3);
}
</script></figure>
</figures>
<p>When only a single <code>t</code> value is given, this function will split a curve at <code>t=...</code>
into two new curves that together are equivalent to the original curve.</p>
<p>When two <code>t</code> values are supplied, the curve is split on <code>t1</code>, after which the
resulting second subcurve is split on (a scaled) <code>t2</code>, yielding a new curve that is equivalent
to the original curve over the interval <code>[t1,t2]</code>.</p>
</section>
<section id="extrema">
<h1>.extrema()</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.extrema().values.forEach(function(t) {
drawCircle(curve.get(t),3);
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.extrema().values.forEach(function(t) {
drawCircle(curve.get(t),3);
});
}
</script></figure>
</figures>
<p>Calculates all the extrema on a curve. Extrema are calculated for each dimension,
rather than for the full curve, so that the result is not the number of convex/concave transitions,
but the number of those transitions for each separate dimension.</p>
<p>This function yields an object <code>{x: [num, num, ...], y: [...], z: [...], values: [...]}</code>
where each dimension lists the array of <code>t</code> values at which an extremum occurs,
<code>z</code> exists only if the curve was a 3d curve, and the <code>values</code> property is the
aggregate of the <code>t</code> values across all dimensions.</p>
<p>These points can be used to determine the reach of a curve.</p>
</section>
<section id="bbox">
<h1>.bbox()</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
drawbbox(curve.bbox());
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
drawbbox(curve.bbox());
}
</script></figure>
</figures>
<p>Calculates (if not cached) the bounding box for this curve, based on its hull coordinates and its extrema.</p>
</section>
<section id="hull">
<h1>.hull(t)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
var hull = curve.hull(0.5)
drawHull(hull);
drawCircle(hull.slice(-1)[0], 5);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 50,185 , 170,175);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
var hull = curve.hull(0.5)
drawHull(hull);
drawCircle(hull.slice(-1)[0], 5);
}
</script></figure>
</figures>
<p>Generates all hull points, at all iterations, for an on-curve point at the specified t-value.
For quadratic curves, this generates a point[6], and for cubic curves, this generates a point[10],
where the first iteration is [0,1,2] and [0,1,2,3] respectively, the second iteration is [3,4]
and [4,5,6] respectively, the third iteration is [5] (the on-curve point for quadratic curves) and
[7,8] respectively, and the fourth iteration (for cubic curves only) is [9].</p>
</section>
<section id="project">
<h1>.project(point)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function(evt) {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
if (evt) {
var mouse = {x: evt.offsetX, y: evt.offsetY};
var p = curve.project(mouse);
drawLine(p,mouse);
}
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 50,185 , 170,175);
var draw = function(evt) {
drawSkeleton(curve);
drawCurve(curve);
setColor("rgb(255,100,100)");
if (evt) {
var mouse = {x: evt.offsetX, y: evt.offsetY};
var p = curve.project(mouse);
drawLine(p,mouse);
}
}
</script></figure>
</figures>
<p>Finds the on-curve point closest to the specific off-curve point, using a two-pass projection test
based on the curve's LUT. A distance comparison finds the closest match, after which a fine interval
around that match is checked to see if a better projection can be found.</p>
</section>
<section id="offset">
<h1>.offset(d) and .offset(t, d)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.offset(25).forEach(function(c) {
drawCurve(c);
});
drawPoint(curve.offset(0.5,25));
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 145,179);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.offset(25).forEach(function(c) {
drawCurve(c);
});
drawPoint(curve.offset(0.5,25));
}
</script></figure>
</figures>
<p>If called only with a distance argument, this function creates a new curve, offset along the curve
normals, at distance <code>d</code>. Note that deep magic lies here and the offset curve of a Bezier
curve cannot ever be another Bezier curve. As such, this function "cheats" and yields an array of
curves which, taken together, form a single continuous curve equivalent to what a theoretical offset
curve would be.</p>
<p>If both a distance and a <code>t</code> value are given, a coordinate is returned instead, representing
the point on the curve at <code>t=...</code>, offset along its normal by a distance <code>d</code>.</p>
</section>
<section id="reduce">
<h1>.reduce()</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
var reduced = curve.reduce();
if(reduced.length>0) {
reduced.forEach(function(c,i) {
setColor("black");
if(i>0) drawCircle(c.points[0],3);
setRandomColor();
drawCurve(c);
});
} else { drawCurve(curve); }
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
var reduced = curve.reduce();
if(reduced.length>0) {
reduced.forEach(function(c,i) {
setColor("black");
if(i>0) drawCircle(c.points[0],3);
setRandomColor();
drawCurve(c);
});
} else { drawCurve(curve); }
}
</script></figure>
</figures>
<p>Reduces a curve to a collection of "simple" subcurves, where a simpleness is defined as having
all control points on the same side of the baseline (cubics having the additional constraint that the
control-to-end-point lines may not cross), and an angle between the end point normals no greater
than 60 degrees.</p>
<p>The main reason this function exists is to make it possible to scale curves. As mentioned in the
offset function, curves cannot be offset without cheating, and the cheating is implemented in this
function. The array of simple curves that this function yields can safely be scaled.</p>
</section>
<section>
<h1>.arcs() and .arcs(threshold)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
var arcs = curve.arcs();
setColor("black");
arcs.forEach(function(arc) {
setRandomFill(0.1);
drawArc(arc);
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
var arcs = curve.arcs();
setColor("black");
arcs.forEach(function(arc) {
setRandomFill(0.1);
drawArc(arc);
});
}
</script></figure>
</figures>
<p>Approximates a Bezier curve as a sequence of circular arcs. An optional threshold
argument controls how well an arc needs to fit to still be considered a reasonable
approximation. The higher the <code>threshold</code>, the less accurate an arc fit is allowed.
If no explicit threshold is set, a value of <code>0.5</code> is used.</p>
<p>This operation is only supported in 2d (for now).</p>
<p>Arcs come with an <code>.interval</code> property, with two values: <code>interval.start</code>
and <code>interval.end</code>, which represent the on-curve <code>t</code> values of the interval
that an arc covers on the original curve.</p>
</section>
<section>
<h1>.scale(d)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
setColor("black");
var reduced = curve.reduce(),
len = reduced.length;
if(len>0) {
reduced.forEach(function(c,i) {
if(i>0) drawCircle(c.points[0],3);
drawCurve(c);
});
for(var i=-30; i<=30; i+=10) {
drawCurve(reduced[(len/2)|0].scale(i));
}
} else { drawCurve(curve); }
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
setColor("black");
var reduced = curve.reduce(),
len = reduced.length;
if(len>0) {
reduced.forEach(function(c,i) {
if(i>0) drawCircle(c.points[0],3);
drawCurve(c);
});
for(var i=-30; i<=30; i+=10) {
drawCurve(reduced[(len/2)|0].scale(i));
}
} else { drawCurve(curve); }
}
</script></figure>
</figures>
<p>Scales a curve with respect to the intersection between the end point normals. Note that this will only
work if that point exists, which is only guaranteed for simple segments.</p>
</section>
<section>
<h1>.outline(d), .outline(d1,d2), and .outline(d1,d2,d3,d4)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var doc = function(c) { drawCurve(c); };
var outline = curve.outline(25);
outline.curves.forEach(doc);
setColor("rgba(0,0,255,0.3)");
outline.offset(10).curves.forEach(doc);
outline.offset(-10).curves.forEach(doc);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(102, 33, 16, 99, 101, 129, 132, 173 );
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var doc = function(c) { drawCurve(c); };
var outline = curve.outline(25);
outline.curves.forEach(doc);
setColor("rgba(0,0,255,0.3)");
outline.offset(10).curves.forEach(doc);
outline.offset(-10).curves.forEach(doc);
}
</script></figure>
</figures>
<p>This generates a curve's outline at distance <code>d</code> along the curve normal and anti-normal.
The result is an array of curves that taken together form the outline path for this curve. The caps
are cubic beziers with the control points oriented to form a straight line.</p>
<p>This function yields a <code>PolyBezier</code> object, which has a property <code>.curves</code> that
houses all the outline segments in sequence, and has a partial Bezier API:</p>
<ul>
<li><code>length()</code> - aggregate sum of all segment lenghts.</li>
<li><code>bbox()</code> - aggregate bounding box fitting all segments.</li>
<li><code>offset(d)</code> - aggregate offset function yielding a new <code>PolyBezier</code>.</li>
</ul>
<p>When only one distance value is given, the outline is generated at distance <code>d</code> on both
the normal and anti-normal. If two distance values are given, the outline is generated at distance
<code>d1</code> on along the normal, and <code>d2</code> along the anti-normal.</p>
<p>Both graphics show the plain outline in red, with the result of calling the PolyBezier's
<code>outline.offset()</code> with values 10 and -10 in light blue. Note that the PolyBezier
offset yields "gaps" between discontinuities. How to deal with these gaps is up to you, and
options involve arc connections with the original outline's connecting vertex as center,
Bezier connections with controls along the line segments, linear extensions of the segments
along the tangents, etc.</p>
<h2>graduated outlines, using .outline(d1,d2,d3,d4)</h2>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var doc = function(c) { drawCurve(c); };
var outline = curve.outline(5,5,25,25);
outline.curves.forEach(doc);
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(102, 33, 16, 99, 101, 129, 132, 173 );
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
var doc = function(c, idx) { drawCurve(c); };
var outline = curve.outline(5,5,25,25);
outline.curves.forEach(doc);
}
</script></figure>
</figures>
<p>Graduated offsetting is achieved by using four distances measures, where <code>d1</code>
is the initial offset along the normal, <code>d2</code> the initial distance along the
anti-normal, <code>d3</code> the final offset along the normal, and <code>d4</code> the
final offset along the anti-normal.</p>
</p>The offsets are graduated (near-)linearly with distance along the curve, and it should
be noted that quadratic curves can only be offset as graduated curve by first raising
it to a cubic curve and then running through the offsetting algorithm. While the code
does this automatically, be aware that quadratic curves come with limitations on their
expressiveness.</p>
</section>
<section>
<h1>.outlineshapes(d), .outlineshapes(d1, d2), and .outlineshapes(d1, d2, curveIntersectionThreshold)</h1>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(150,40 , 80,30 , 105,150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.outlineshapes(25).forEach(function(s) {
setRandomFill(0.2);
drawShape(s);
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,90 , 110,100 , 150,195);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
curve.outlineshapes(25).forEach(function(s) {
setRandomFill(0.2);
drawShape(s);
});
}
</script></figure>
</figures>
<p>This generates a curve's outline as a series of shapes, rather than as a path sequence. Each shape is
an object <code>{startcap: (bezier), forward: (bezier), endcap: (bezier), back: (bezier)}</code>.
Additionally, each cap has a <code>.virtual</code> attribute to indicate whether it a true cap for
the original curve's outline, or an intermediary cap somewhere inside the collection of outline shapes.</p>
<p>When only one distance value is given, the shape's curve's outlines are generated at distance <code>d</code> on both
the normal and anti-normal. If two distance values are given, the shape's curve's outlines are generated at distance
<code>d1</code> on along the normal, and <code>d2</code> along the anti-normal.</p>
<p>Finally, shapes have an <code>.intersections(othershape)</code> function for finding intersections
between shapes rather than between individual curves. If <code>curveIntersectionThreshold</code> is provided, it
will be used for precision of <a href="#curvetocurveintersection">curve to curve intersections</a>.</p>
</section>
<section>
<h1>.intersects(), .intersects(line), .intersects(curve), and .intersects(curve, curveIntersectionThreshold)</h1>
<h2>.intersects()</h2>
<figures>
<figure class="cubic"><script type="text/beziercode">
new Bezier(100,25 , 10,180 , 170,165 , 65,70);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
curve.intersects().forEach(function(pair) {
var t = pair.split("/").map(function(v) { return parseFloat(v); });
drawPoint(curve.get(t[0]));
});
}
</script></figure>
</figures>
<p>Without arguments, this function checks for self-intersection. This means it has no meaning for
quadratic curves, which can't self intersect without being a degenerate curve (i.e. having
coordinates that all lie on the same line, thus not actually being a "curve" so much as a "bizar
way to draw a line"). Intersections are yielded as an array of <code>float/float</code> strings,
where the two floats are separated by the character <code>/</code> and both floats corresponding
to <code>t</code> values on the curve at which the intersection is found.</p>
</section>
<section>
<h2>.intersects(line)</h2>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(58, 173, 26, 28, 163, 104);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
var line = { p1: {x:0, y:175}, p2: {x:200,y:25} };
setColor("red");
drawLine(line.p1, line.p2);
setColor("black");
curve.intersects(line).forEach(function(t) {
drawPoint(curve.get(t));
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(53, 163, 27, 19, 182, 176, 155, 36);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
var line = { p1: {x:0, y:175}, p2: {x:200,y:25} };
setColor("red");
drawLine(line.p1, line.p2);
setColor("black");
curve.intersects(line).forEach(function(t) {
drawPoint(curve.get(t));
});
}
</script></figure>
</figures>
<p>Finds the intersections between this curve an some line <code>{p1: {x:... ,y:...}, p2: ... }</code>.
The intersections are an array of <code>t</code> values on this curve.</p>
<p>Curves are first aligned (translation/rotation) such that the curve's first coordinate is (0,0),
and the curve is rotated so that the intersecting line coincides with the x-axis. Doing so turns
"intersection finding" into plain "root finding".</p>
<p>As a root finding solution, the roots are computed symbolically for both quadratic and cubic curves,
using the standard square root function which you might remember from high school, and the absolutely
not standard Cardano's algorithm for solving the cubic root function.</p>
</section>
<a name="curvetocurveintersection"></a>
<section>
<h2>.intersects(curve) and .intersects(curve, curveIntersectionThreshold)</h2>
<figures>
<figure class="quadratic"><script type="text/beziercode">
new Bezier(48, 84, 100, 187, 166, 37);
var curve2 = new Bezier(68, 150, 74, 6, 143, 150);
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
drawCurve(curve2);
setColor("black");
curve.intersects(curve2).forEach(function(pair) {
var t = pair.split("/").map(function(v) { return parseFloat(v); });
drawPoint(curve.get(t[0]));
});
}
</script></figure>
<figure class="cubic"><script type="text/beziercode">
new Bezier(48, 84, 104, 176, 190, 37, 121, 75);
var curve2 = new Bezier(68, 145, 74, 6, 143, 197, 138, 55 );
var draw = function() {
drawSkeleton(curve);
drawCurve(curve);
setColor("red");
drawCurve(curve2);
setColor("black");
curve.intersects(curve2).forEach(function(pair) {
var t = pair.split("/").map(function(v) { return parseFloat(v); });
drawPoint(curve.get(t[0]));
});
}
</script></figure>
</figures>
<p>Finds the intersections between this curve and another. Intersections are yielded as an array
of <code>float/float</code> strings, where the two floats are separated by the character <code>/</code>,
the first floats corresponds to the <code>t</code> value on this curve, and the second float corresponds
to the <code>t</code> value on the other curve.</p>
<p>Curve/curve intersection uses an interative process, where curves are subdivided at the midpoint, and
bounding box overlap checks are performed between the resulting smaller curves. Any overlap is marked as
a pair to resolve, and the "divide and check overlap" step is repeated. Doing this enough times
"homes in" on the actual intersections, such that with infinite divisions, we can get an arbitrarily
close approximation of the <code>t</code> values involved. Thankfully, repeating the process a low number
of steps is generally good enough to get reliable values (typically 10 steps yields more than acceptable
precision). When <code>curveIntersectionThreshold</code> is provided, this will be used for bounding box
comparisons in x and y dimensions so that precision can be specified, otherwise a default value of .5 will be used.</p>
</section>
</main>
<footer>
<p>Made by <a href="https://twitter.com/TheRealPomax">Pomax</a>. Based on the work done for <a href="http://pomax.github.io/bezierinfo">A Primer on Bézier Curves</a>. Naturally, the code's open source over on <a href="http://github.com/Pomax/bezierjs">github</a>.<br>
Still to do: intersection resolution for outlines with overlapping extrusions.</p>
</footer>
<script src="./bezier.js"></script>
<script src="js/draw.js"></script>
<script src="js/interaction.js"></script>
<script src="js/loader.js"></script>
</body>
</html>