-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviterbiDecoderGF4DegenerateStripSoftCircuit.m
340 lines (269 loc) · 12.1 KB
/
viterbiDecoderGF4DegenerateStripSoftCircuit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
%Weilei Zeng, jan 10 2018
% This program is adapted for SimulationRepeatCircuit. The input is
% errorInput: qubit error only
% syndrome: the actual syndrome result (s_1,s_2) for G and AG respectively.
% from the syndrome, this program will decode an error. If it matches the errorInput, then decoding is successful.
% Weilei Zeng, 07/19/2018
% soft decision decoding
% viterbi decoding for hybrid convolutional code (quantum and classical).
% use trellisGF4 defined by Weilei Zeng.
function [isGoodError,errorRemained,syndromeRemained] = viterbiDecoderGF4DegenerateStripSoftCircuit(...
P,strip,Ptransfer,Qtransfer,numInputSymbols,trellisGF4Strip,...
errorInput,metric_vec_P_input,syndrome,P_dual)
%isGoodError: return 1 for fully-detected good error and 0 otherwise
errorCircuit=errorInput;%errorInput has no syndrome bit error. (The actual syndrome measurement result is inputed)
% This is syndrome (s_1,s_2) trasnformed by Gtransfer such that it mataches the rows of P. The transform is done out side of this decoder
metric_vec_P=[1-(syndrome*Ptransfer)*2].*metric_vec_P_input; %syndrome is a length-m row vector
%initialize
numLayers = size(trellisGF4Strip,2);
trellisGF4=trellisGF4Strip{1};
metric = zeros(trellisGF4.numStates,1)-numLayers; %-trellisGF4.numLayers for some non-exist path
path = zeros(trellisGF4.numStates,trellisGF4.numLayers)-1; %-1 for some non-exist path
pathMetricCell = cell(4,numLayers); %rows: shiftLength,pathLength,Path[]
layer=1;
for i = 1:trellisGF4.numStates
if trellisGF4.stateIsOccupied(i,layer) %run over all occupied current state
currentState = i-1; %use a number to represent the binary syndrome vector
%currentStateVec=(de2bi(currentState,r)); %the right most has the higest order in the binary vector, refer to the bottom row in the parity check matrix
for j = 1:trellisGF4.numInputSymbols(layer) % and over all possible input
input = j-1;
metric_temp = getMetric(input,1,metric_vec_P);
nextState=trellisGF4.nextStatesCell{1}(currentState+1,input+1);
if metric_temp > metric(nextState+1) %find path with maximum metric
path(nextState+1,1)=input;
metric(nextState+1)=metric_temp;
end
end
end
end
shiftLength=0;
pathMetricCell{1,1}=shiftLength;
pathMetricCell{3,1}=path;
pathMetricCell{4,1}=metric;
%going through the path and find the path with maximum metric
for layer = 2:numLayers
%initialize/clear data
trellisGF4=trellisGF4Strip{layer};
shiftLength=strip(1,layer)-strip(1,layer-1);
initialMetric = last2initialMetric(metric,shiftLength,trellisGF4.numStates); %shift the last metric to match the curent Length
currentMetric = zeros(size(initialMetric,1),1)-numLayers; %save metric in this layer
%new_metric = zeros(trellisGF4.numStates,1)-trellisGF4.numLayers;
new_path = zeros(trellisGF4.numStates,trellisGF4.numLayers)-1;
%nextStates=trellisGF4.nextStatesCell{layer};
for i = 1:trellisGF4.numStates
if trellisGF4.stateIsOccupied(i,1) %run over all occupied current state
currentState = i-1; %use a number to represent the binary syndrome vector
%currentStateVec=(de2bi(currentState,r)); %the right most has the higest order in the binary vector, refer to the bottom row in the parity check matrix
for j = 1:numInputSymbols(layer) % and over all possible input
input = j-1;
metric_temp = getMetric(input,layer,metric_vec_P);
nextState=trellisGF4.nextStatesCell{1}(currentState+1,input+1);
metric_temp=initialMetric(currentState+1)+metric_temp;
if nextState > -1 & trellisGF4.stateIsOccupied(nextState+1,2) == 1 ...
& metric_temp > currentMetric(nextState+1) %find path with maximum metric
%disp([metric_temp,new_metric(nextState+1)])
%update metric and path
error = getError(input,layer,metric_vec_P);
new_path(nextState+1,1)=error;
%new_path(nextState+1,1:(layer-1)) = path(currentState+1,1:(layer-1));
currentMetric(nextState+1)=metric_temp;
end
end
end
end
%update info for this layer
path=new_path;
metric=currentMetric;
% if (size(path,1) == -sum(path))
% disp(['WRONG PATH when layer = ',num2str(layer)])
% end
pathMetricCell{1,layer}=shiftLength;
%pathMetricCell{2,layer}=pathLength;
pathMetricCell{3,layer}=path;
pathMetricCell{4,layer}=metric;
%check
% if layer == 37
% path37 = path;
% end
end
%track back the decoded error
errorDetected=zeros(1,numLayers)-1;
finalState=0;
for i = 2:numLayers
layer=numLayers-i+2;
% top = strip(1,layer);
% bottom = strip(2,layer);
path=pathMetricCell{3,layer};
error=path(finalState+1);
trellisGF4 = trellisGF4Strip{layer};
previousStates =trellisGF4.previousStatesCell{1};
% finalState
% error
previousState = previousStates(finalState+1,getError(error,layer,metric_vec_P)+1);
errorDetected(layer) = error;
shiftLength=strip(1,layer)-strip(1,layer-1);
% shiftLength
finalState = previous2final(previousState,shiftLength);
% path,error,previousStates,previousState,finalState
end
%the first layer/error
layer=1;
path=pathMetricCell{3,layer};
error=path(finalState+1);
%trellisGF4 = trellisGF4Strip{layer};
%previousStates =trellisGF4.previousStatesCell{1};
%previousState = previousStates(finalState+1,getError(error,layer,metric_vec_P)+1);
errorDetected(layer) = error;
%shiftLength=0;
%finalState = previous2final(previousState,shiftLength);
% path,error,previousStates,previousState,finalState
%errorDetected = totalError2QubitError(errorDetected,Qtransfer)
errorRemained=plusGF4vec(errorDetected,errorInput); % updated on Jan 10 2019, Weilei
errorRemained = totalError2QubitError(errorRemained,Qtransfer);
%This is the syndrome for the remained error. because the function measureP can not be used outside this script, we calculate syndrome here for other program to use.
metricRemained = measureP(P,errorInput,Ptransfer,Qtransfer,numInputSymbols,metric_vec_P_input);
syndromeRemained = (metricRemained/max(metricRemained)-1)/(-2)*Ptransfer';%weilei Feb 18
%totalNumberOfErrorRemained = sum(errorRemained);
%disp('notation in errormap => 1: remained error; 2: fixed error')
% display
%disp('[errorInput;metric_vec_P;errorDetected;Qtransferl;order]')
%order=1:size(Qtransfer,2);
%order=size(Qtransfer,2)-order; %reverse
%[errorInput;metric_vec_P;errorDetected;errorRemained;Qtransfer;order]'
if sum(abs(errorRemained))
isGoodError = 0;
%check if errorRemained is a trivial error in the stabilzier group
%a trivial error in stabilizer group commute with all codeword, but a code doesn't commute with at least one other codeword.
dual_syndrome=measure(P_dual,errorRemained,numInputSymbols);
if sum(dual_syndrome)==0 %is a trivial error
isGoodError=1;
errorRemained=errorRemained*0;
end
else %zero remained error
isGoodError = 1;
%print the good error
%errorInput
%syndrome
%pause
end
end
function metric = getMetric(input,layer,metric_vec)
%return 'weight'/metric of input qubit/bit
% In metric_vec use 1, -1 for hard decision, use Log(1-p)/p for soft
% decision
if input ==0
%metric=1; %weight 0
metric = metric_vec(layer);
else
%metric=-1; %weight 1
metric = -metric_vec(layer);
end
end
function error = getError(input,layer,metric_vec)
%return the right error for this branch: flip the input when the syndrome
%is 1
if metric_vec(layer)>0
error = input;
else
if input > 1
%disp('only 0/1 input for syndrome bit, no input for qubits')
error = input;
else
error = 1-input;
end
end
end
function syndrome = measure(G,error,numInputSymbols) %GF4 and GF2;
%from parity check matrix G and row vector error e, calculate the row vector syndrome
syndrome = zeros(1,size(G,1));
ss=G;
for i =1:size(G,1)
for j = 1:size(G,2)
switch numInputSymbols(j)
case 4 %qubit error
ss(i,j)=traceGF4(G(i,j),error(j));
case 2 %syndrome error
ss(i,j) = G(i,j)*error(j);
end
end
temp_sum = sum(ss(i,:));
syndromebit = temp_sum - floor(temp_sum/2)*2;
syndrome(i)=syndromebit;
end
end
function mixMetric = measureP(P,errorInput,Ptransfer,Qtransfer,numInputSymbols,metric_vec_P_input)
%calculate qubit error and syndrome error independently and return the
%metricVec. This part is explained in data syndrome code2.pdf
% note our P is not the actual parity check matrix. It has A instead
% of AG
%This return the metric/syndrome as (s_1,s_2) in the permuted form that matches P. It is not (s_1,As_1+s_2)
qubitError = errorInput.*( 1-Qtransfer );
syndromeError = errorInput.*( Qtransfer );
syndrome_G = measure(P,qubitError,numInputSymbols);
%syndrome_G is the part of syndrome corresponding to G only, not A
metric_G=syndrome2metric_vec_P(syndrome_G,Ptransfer);
error_sG = (metric_G-1)/(-2); % convert 1 -1 to 0 1
syndrome_A = measure(P,error_sG,numInputSymbols);
%syndromeA is the full syndrome for
%the qubit error
metric_A=syndrome2metric_vec_P(syndrome_A,Ptransfer);
error_sA = (metric_A-1)/(-2); %In fact, error_sA=syndrome_A*Ptransfer
mixError = bitxor(error_sA , syndromeError);%only syndrome error
%mixError is the actual syndrome result. error_sA is the right
%syndrome for the qubit error
%mixMetric = -(mixError*2-1);%for hard decision decoding
%soft decision decoding. when metric_vec_P_input is an even vector, it
%goes back to hard decision decoding
mixMetric = metric_vec_P_input;
for i =1:size(mixMetric,2)
if mixError(i)
mixMetric(i) = -mixMetric(i);
end
end
end
function metric_vec =syndrome2metric_vec_P(syndrome,Ptransfer)
%apply syndrome result to the correspoing columns in metric_vec_P,
%according to Ptransfer
[rowP,colP]=size(Ptransfer);
%colP=size(syndrome,2);
% size(syndrome)
% size( Ptransfer)
metric01 = syndrome*Ptransfer;
metric_vec = ones(1,colP);
for i =1:colP
if metric01(i) %if get this syndrome
metric_vec(i)=-1;
end
end
end
function qubitError = totalError2QubitError(totalError,Qtransfer)
qubitError = totalError;
for i=1:size(totalError,2)
if Qtransfer(i)
qubitError(i)=0;
end
end
end
function initial_metric = last2initialMetric(last_metric,shiftLength,numStates)
%1 means occupied, and 0 otherwise
%only those in the lastStates, whose positions to lose refer to zero state
%will be transimitted into the inital state in the next layer
%initialStateLength=size(lastState,1)=2^(size(G,1);
%shift length in binary
initial_metric=zeros(numStates,1)-1;
numLastState=size(last_metric,1);
for i_initial = 1:numLastState/(2^shiftLength)
initialState=i_initial-1;
lastZeroState=initialState*(2^shiftLength)+1;
initial_metric(i_initial)=last_metric(lastZeroState);
end
end
function finalState = previous2final(previousState,shiftLength)%,shiftSyndrome)
%1 means occupied, and 0 otherwise
%only those in the lastStates, whose positions to lose refer to zero state
%will be transimitted into the inital state in the next layer
%initialStateLength=size(lastState,1)=2^(size(G,1);
%shift length in binary
finalState = previousState*( 2^shiftLength );
% finalState = finalState + shiftSyndrome;
end