-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport.py
66 lines (57 loc) · 2.64 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air and onnx models#################
python export.py
"""
import os
import numpy as np
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
# -----> Ascend
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=config.device_id)
def modelarts_pre_process():
'''modelarts pre process function.'''
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
"""run export."""
if config.network_dataset == 'resnet18_cifar10':
from src.resnet import resnet18 as resnet
elif config.network_dataset == 'resnet18_imagenet2012':
from src.resnet import resnet18 as resnet
elif config.network_dataset == 'resnet34_imagenet2012':
from src.resnet import resnet34 as resnet
elif config.network_dataset == 'resnet50_cifar10':
from src.resnet import resnet50 as resnet
elif config.network_dataset == 'resnet50_imagenet2012':
from src.resnet import resnet50 as resnet
elif config.network_dataset == 'resnet101_imagenet2012':
from src.resnet import resnet101 as resnet
elif config.network_dataset == 'se-resnet50_imagenet2012':
from src.resnet import se_resnet50 as resnet
else:
raise ValueError("network and dataset is not support.")
net = resnet(config.class_num)
assert config.checkpoint_file_path is not None, "checkpoint_path is None."
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.zeros([config.batch_size, 3, config.height, config.width], np.float32))
export(net, input_arr, file_name=config.file_name, file_format=config.file_format)
if __name__ == '__main__':
run_export()