-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
executable file
·87 lines (76 loc) · 3.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
from mindspore import context
from mindspore.common import set_seed
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.CrossEntropySmooth import CrossEntropySmooth
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
set_seed(1)
if config.net_name in ("resnet18", "resnet34", "resnet50"):
if config.net_name == "resnet18":
from src.resnet import resnet18 as resnet
if config.net_name == "resnet34":
from src.resnet import resnet34 as resnet
if config.net_name == "resnet50":
from src.resnet import resnet50 as resnet
if config.dataset == "cifar10":
from src.dataset import create_dataset1 as create_dataset
else:
from src.dataset import create_dataset2 as create_dataset
elif config.net_name == "resnet101":
from src.resnet import resnet101 as resnet
from src.dataset import create_dataset3 as create_dataset
else:
from src.resnet import se_resnet50 as resnet
from src.dataset import create_dataset4 as create_dataset
@moxing_wrapper()
def eval_net():
"""eval net"""
target = config.device_target
# -----> Ascend
# init context
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
# create dataset
dataset = create_dataset(dataset_path=config.data_path, do_train=False, batch_size=config.batch_size,
target=target)
# define net
net = resnet(class_num=config.class_num)
# load checkpoint
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(net, param_dict)
net.set_train(False)
# define loss, model
if config.dataset == "imagenet2012":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction='mean',
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
else:
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# define model
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
# eval model
res = model.eval(dataset)
print("result:", res, "ckpt=", config.checkpoint_file_path)
if __name__ == '__main__':
eval_net()