forked from lonePatient/BERT-NER-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ner_span.py
494 lines (473 loc) · 26.6 KB
/
run_ner_span.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import argparse
import glob
import logging
import os
import json
import time
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from callback.progressbar import ProgressBar
from callback.adversarial import FGM
from tools.common import seed_everything, json_to_text
from tools.common import init_logger, logger
from transformers import WEIGHTS_NAME, BertConfig,get_linear_schedule_with_warmup,AdamW, BertTokenizer
from models.bert_for_ner import BertSpanForNer
from processors.ner_span import convert_examples_to_features
from processors.ner_span import ner_processors as processors
from processors.ner_span import collate_fn
from metrics.ner_metrics import SpanEntityScore
from processors.utils_ner import bert_extract_item
from tools.finetuning_argparse import get_argparse
MODEL_CLASSES = {
## bert ernie bert_wwm bert_wwwm_ext
'bert': (BertConfig, BertSpanForNer, BertTokenizer),
}
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
collate_fn=collate_fn)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
bert_parameters = model.bert.named_parameters()
start_parameters = model.start_fc.named_parameters()
end_parameters = model.end_fc.named_parameters()
optimizer_grouped_parameters = [
{"params": [p for n, p in bert_parameters if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': args.learning_rate},
{"params": [p for n, p in bert_parameters if any(nd in n for nd in no_decay)], "weight_decay": 0.0
, 'lr': args.learning_rate},
{"params": [p for n, p in start_parameters if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': 0.001},
{"params": [p for n, p in start_parameters if any(nd in n for nd in no_decay)], "weight_decay": 0.0
, 'lr': 0.001},
{"params": [p for n, p in end_parameters if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': 0.001},
{"params": [p for n, p in end_parameters if any(nd in n for nd in no_decay)], "weight_decay": 0.0
, 'lr': 0.001},
]
args.warmup_steps = int(t_total * args.warmup_proportion)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path) and "checkpoint" in args.model_name_or_path:
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
if args.do_adv:
fgm = FGM(model, emb_name=args.adv_name, epsilon=args.adv_epsilon)
model.zero_grad()
seed_everything(args.seed) # Added here for reproductibility (even between python 2 and 3)
pbar = ProgressBar(n_total=len(train_dataloader), desc='Training', num_epochs=int(args.num_train_epochs))
if args.save_steps==-1 and args.logging_steps==-1:
args.logging_steps=len(train_dataloader)
args.save_steps = len(train_dataloader)
for epoch in range(int(args.num_train_epochs)):
pbar.reset()
pbar.epoch_start(current_epoch=epoch)
for step, batch in enumerate(train_dataloader):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1],
"start_positions": batch[3], "end_positions": batch[4]}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None)
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.do_adv:
fgm.attack()
loss_adv = model(**inputs)[0]
if args.n_gpu > 1:
loss_adv = loss_adv.mean()
loss_adv.backward()
fgm.restore()
pbar(step, {'loss': loss.item()})
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedul
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
logger.info("\n")
if args.local_rank == -1:
# Only evaluate when single GPU otherwise metrics may not average well
evaluate(args, model, tokenizer)
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
tokenizer.save_vocabulary(output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
# torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
logger.info("\n")
if 'cuda' in str(args.device):
torch.cuda.empty_cache()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
metric = SpanEntityScore(args.id2label)
eval_output_dir = args.output_dir
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
eval_features = load_and_cache_examples(args, args.task_name, tokenizer, data_type='dev')
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_features))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
pbar = ProgressBar(n_total=len(eval_features), desc="Evaluating")
for step, f in enumerate(eval_features):
input_lens = f.input_len
input_ids = torch.tensor([f.input_ids[:input_lens]], dtype=torch.long).to(args.device)
input_mask = torch.tensor([f.input_mask[:input_lens]], dtype=torch.long).to(args.device)
segment_ids = torch.tensor([f.segment_ids[:input_lens]], dtype=torch.long).to(args.device)
start_ids = torch.tensor([f.start_ids[:input_lens]], dtype=torch.long).to(args.device)
end_ids = torch.tensor([f.end_ids[:input_lens]], dtype=torch.long).to(args.device)
subjects = f.subjects
model.eval()
with torch.no_grad():
inputs = {"input_ids": input_ids, "attention_mask": input_mask,
"start_positions": start_ids, "end_positions": end_ids}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
inputs["token_type_ids"] = (segment_ids if args.model_type in ["bert", "xlnet"] else None)
outputs = model(**inputs)
tmp_eval_loss, start_logits, end_logits = outputs[:3]
R = bert_extract_item(start_logits, end_logits)
T = subjects
metric.update(true_subject=T, pred_subject=R)
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
pbar(step)
logger.info("\n")
eval_loss = eval_loss / nb_eval_steps
eval_info, entity_info = metric.result()
results = {f'{key}': value for key, value in eval_info.items()}
results['loss'] = eval_loss
logger.info("***** Eval results %s *****", prefix)
info = "-".join([f' {key}: {value:.4f} ' for key, value in results.items()])
logger.info(info)
logger.info("***** Entity results %s *****", prefix)
for key in sorted(entity_info.keys()):
logger.info("******* %s results ********" % key)
info = "-".join([f' {key}: {value:.4f} ' for key, value in entity_info[key].items()])
logger.info(info)
return results
def predict(args, model, tokenizer, prefix=""):
pred_output_dir = args.output_dir
if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(pred_output_dir)
test_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='test')
print(len(test_dataset))
# Note that DistributedSampler samples randomly
test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=1, collate_fn=collate_fn)
# Eval!
logger.info("***** Running prediction %s *****", prefix)
logger.info(" Num examples = %d", len(test_dataset))
logger.info(" Batch size = %d", 1)
results = []
output_predict_file = os.path.join(pred_output_dir, prefix, "test_predict.json")
pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
for step, batch in enumerate(test_dataloader):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "start_positions": None, "end_positions": None}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None)
outputs = model(**inputs)
start_logits, end_logits = outputs[:2]
R = bert_extract_item(start_logits, end_logits)
if R:
label_entities = [[args.id2label[x[0]], x[1], x[2]] for x in R]
else:
label_entities = []
json_d = {}
json_d['id'] = step
json_d['entities'] = label_entities
results.append(json_d)
pbar(step)
logger.info("\n")
with open(output_predict_file, "w") as writer:
for record in results:
writer.write(json.dumps(record) + '\n')
if args.task_name == "cluener":
output_submit_file = os.path.join(pred_output_dir, prefix, "test_submit.json")
test_text = []
with open(os.path.join(args.data_dir, "test.json"), 'r') as fr:
for line in fr:
test_text.append(json.loads(line))
test_submit = []
for x, y in zip(test_text, results):
json_d = {}
json_d['id'] = x['id']
json_d['label'] = {}
entities = y['entities']
words = list(x['text'])
if len(entities) != 0:
for subject in entities:
tag = subject[0]
start = subject[1]
end = subject[2]
word = "".join(words[start:end + 1])
if tag in json_d['label']:
if word in json_d['label'][tag]:
json_d['label'][tag][word].append([start, end])
else:
json_d['label'][tag][word] = [[start, end]]
else:
json_d['label'][tag] = {}
json_d['label'][tag][word] = [[start, end]]
test_submit.append(json_d)
json_to_text(output_submit_file, test_submit)
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_span-{}_{}_{}_{}'.format(
data_type,
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.train_max_seq_length if data_type == 'train' else args.eval_max_seq_length),
str(task)))
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if data_type == 'train':
examples = processor.get_train_examples(args.data_dir)
elif data_type == 'dev':
examples = processor.get_dev_examples(args.data_dir)
else:
examples = processor.get_test_examples(args.data_dir)
features = convert_examples_to_features(examples=examples,
tokenizer=tokenizer,
label_list=label_list,
max_seq_length=args.train_max_seq_length if data_type == 'train' \
else args.eval_max_seq_length,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
pad_on_left=bool(args.model_type in ['xlnet']),
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
if data_type == 'dev':
return features
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_start_ids = torch.tensor([f.start_ids for f in features], dtype=torch.long)
all_end_ids = torch.tensor([f.end_ids for f in features], dtype=torch.long)
all_input_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_ids, all_end_ids, all_input_lens)
return dataset
def main():
args = get_argparse().parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.output_dir = args.output_dir + '{}'.format(args.model_type)
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
init_logger(log_file=args.output_dir + f'/{args.model_type}-{args.task_name}-{time_}.log')
if os.path.exists(args.output_dir) and os.listdir(
args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, )
# Set seed
seed_everything(args.seed)
# Prepare NER task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
label_list = processor.get_labels()
args.id2label = {i: label for i, label in enumerate(label_list)}
args.label2id = {label: i for i, label in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.model_name_or_path,num_labels=num_labels)
config.soft_label = True
config.loss_type=args.loss_type
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path,do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path,config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_vocabulary(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
if global_step:
result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
results.update(result)
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
if args.do_predict and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.predict_checkpoints > 0:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
checkpoints = [x for x in checkpoints if x.split('-')[-1] == str(args.predict_checkpoints)]
logger.info("Predict the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
predict(args, model, tokenizer, prefix=prefix)
if __name__ == "__main__":
main()