-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEMatrix2.h
258 lines (227 loc) · 6.87 KB
/
EMatrix2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*=============================================================================*/
// Copyright 2019 Elite Engine 2.0
// Authors: Matthieu Delaere
/*=============================================================================*/
// EMatrix2.h: Column Major Matrix2x2 struct
/*=============================================================================*/
#ifndef ELITE_MATH_MATRIX2
#define ELITE_MATH_MATRIX2
#include "EMatrix.h"
#include "EVector.h"
#include "EMathUtilities.h"
namespace Elite
{
//=== MATRIX2x2 SPECIALIZATION ===
template<typename T>
struct Matrix<2, 2, T>
{
//=== Data ===
T data[2][2];
//=== Constructors ===
#pragma region Constructors
Matrix<2, 2, T>() = default;
//Every "row" of values passed here is a row in our matrix!
Matrix<2, 2, T>(T _00, T _01,
T _10, T _11)
{
data[0][0] = _00; data[0][1] = _10;
data[1][0] = _01; data[1][1] = _11;
}
//Every vector passed here is a column in our matrix!
Matrix<2, 2, T>(const Vector<2, T>& a, const Vector<2, T>& b)
{
data[0][0] = a.x; data[0][1] = a.y;
data[1][0] = b.x; data[1][1] = b.y;
}
Matrix<2, 2, T>(const Matrix<2, 2, T>& m)
{
data[0][0] = m.data[0][0]; data[0][1] = m.data[0][1];
data[1][0] = m.data[1][0]; data[1][1] = m.data[1][1];
}
Matrix<2, 2, T>(Matrix<2, 2, T>&& m) noexcept
{
data[0][0] = std::move(m.data[0][0]); data[0][1] = std::move(m.data[0][1]);
data[1][0] = std::move(m.data[1][0]); data[1][1] = std::move(m.data[1][1]);
}
#pragma endregion
//=== Arithmetic Operators ===
#pragma region ArithmeticOperators
inline Matrix<2, 2, T> operator+(const Matrix<2, 2, T>& m) const
{
return Matrix<2, 2, T>(
data[0][0] + m.data[0][0], data[1][0] + m.data[1][0],
data[0][1] + m.data[0][1], data[1][1] + m.data[1][1]);
}
inline Matrix<2, 2, T> operator-(const Matrix<2, 2, T>& m) const
{
return Matrix<2, 2, T>(
data[0][0] - m.data[0][0], data[1][0] - m.data[1][0],
data[0][1] - m.data[0][1], data[1][1] - m.data[1][1]);
}
template<typename U>
inline Matrix<2, 2, T> operator*(U scale) const
{
const T s = static_cast<T>(scale);
return Matrix<2, 2, T>(
data[0][0] * s, data[1][0] * s,
data[0][1] * s, data[1][1] * s);
}
template<typename U>
inline Matrix<2, 2, T> operator/(U scale) const
{
const T revS = static_cast<T>(1.0f / scale);
return Matrix<2, 2, T>(
data[0][0] * revS, data[1][0] * revS,
data[0][1] * revS, data[1][1] * revS);
}
inline Matrix<2, 2, T> operator*(const Matrix<2, 2, T>& rm)
{
const Matrix<2, 2, T>& lm = (*this);
return Matrix<2, 2, T>(
lm(0, 0) * rm(0, 0) + lm(0, 1) * rm(1, 0),
lm(0, 0) * rm(0, 1) + lm(0, 1) * rm(1, 1),
lm(1, 0) * rm(0, 0) + lm(1, 1) * rm(1, 0),
lm(1, 0) * rm(0, 1) + lm(1, 1) * rm(1, 1));
}
inline Vector<2, T> operator*(const Vector<2, T>& v)
{
const Matrix<2, 2, T>& m = (*this);
return Vector<2, T>(
m(0, 0) * v.x + m(0, 1) * v.y,
m(1, 0) * v.x + m(1, 1) * v.y);
}
#pragma endregion
//=== Compound Assignment Operators ===
#pragma region CompoundAssignmentOperators
inline Matrix<2, 2, T>& operator=(const Matrix<2, 2, T>& m)
{
data[0][0] = m.data[0][0]; data[0][1] = m.data[0][1];
data[1][0] = m.data[1][0]; data[1][1] = m.data[1][1];
return *this;
}
inline Matrix<2, 2, T>& operator+=(const Matrix<2, 2, T>& m)
{
data[0][0] += m.data[0][0]; data[0][1] += m.data[0][1];
data[1][0] += m.data[1][0]; data[1][1] += m.data[1][1];
return *this;
}
inline Matrix<2, 2, T>& operator-=(const Matrix<2, 2, T>& m)
{
data[0][0] -= m.data[0][0]; data[0][1] -= m.data[0][1];
data[1][0] -= m.data[1][0]; data[1][1] -= m.data[1][1];
return *this;
}
template<typename U>
inline Matrix<2, 2, T>& operator*=(U scale)
{
const T s = static_cast<T>(scale);
data[0][0] *= s; data[0][1] *= s;
data[1][0] *= s; data[1][1] *= s;
return *this;
}
template<typename U>
inline Matrix<2, 2, T>& operator/=(U scale)
{
const T revS = static_cast<T>(1.0f / scale);
data[0][0] *= revS; data[0][1] *= revS;
data[1][0] *= revS; data[1][1] *= revS;
return *this;
}
inline Matrix<2, 2, T>& operator*=(const Matrix<2, 2, T>& m)
{
//Copy is necessary! :(
*this = *this * m;
return *this;
}
#pragma endregion
//=== Relational Operators ===
#pragma region RelationalOperators
inline bool operator==(const Matrix<2, 2, T>& m) const
{ return ((*this)[0] == m[0]) && ((*this)[1] == m[1]); }
inline bool operator!=(const Matrix<2, 2, T>& m) const
{ return !(*this == m); }
#pragma endregion
//=== Member Access Operators ===
#pragma region MemberAccessOperators
//Access parameter order still happens as row,column indexing (standard in programming)
inline T operator()(uint8_t r, uint8_t c) const
{
assert((r < 2 && c < 2) && "ERROR: indices of Matrix2x2 () const operator are out of bounds!");
return (data[c][r]);
}
inline T& operator()(uint8_t r, uint8_t c)
{
assert((r < 2 && c < 2) && "ERROR: indices of Matrix2x2 () operator are out of bounds!");
return (data[c][r]);
}
//Get a vector representation of a column (usage), but internally returns one of the rows
inline const Vector<2, T>& operator[](uint8_t c) const
{
assert((c < 2) && "ERROR: index of Matrix2x2 [] operator is out of bounds!");
return *((Vector<2, T>*)data[c]);
}
inline Vector<2, T>& operator[](uint8_t c)
{
assert((c < 3) && "ERROR: index of Matrix2x2 [] operator is out of bounds!");
return *((Vector<2, T>*)data[c]);
}
#pragma endregion
//=== Static Functions ===
static Matrix<2, 2, T> Identity();
};
//--- VECMATRIX3 FUNCTIONS ---
#pragma region GlobalOperators
#pragma endregion
#pragma region GlobalFunctions
template<typename T>
inline Matrix<2, 2, T> Matrix<2, 2, T>::Identity()
{
return Matrix<2, 2, T>(
1,0,
0,1);
}
template<typename T>
inline Matrix<2, 2, T> Transpose(const Matrix<2, 2, T>& m)
{
Matrix<2, 2, T> t = {};
t(0, 0) = m(0, 0);
t(0, 1) = m(1, 0);
t(1, 0) = m(0, 1);
t(1, 1) = m(1, 1);
return t;
}
template<typename T>
inline T Determinant(const Matrix<2, 2, T>& m)
{ return m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0); }
template<typename T>
inline Matrix<2, 2, T> Inverse(const Matrix<2, 2, T>& m)
{
T invDet = static_cast<T>(1.0f / Determinant(m));
Matrix<2, 2, T> inv = {};
inv(0, 0) = +m(1, 1) * invDet;
inv(0, 1) = -m(0, 1) * invDet;
inv(1, 0) = -m(1, 0) * invDet;
inv(1, 1) = +m(0, 0) * invDet;
return inv;
}
//Rotations with a positive angle are considered a counterclockwise rotations around the axis pointing towards
//the viewer.
template<typename T>
inline Matrix<2, 2, T> MakeRotation(T t)
{
T c = static_cast<T>(cos(t));
T s = static_cast<T>(sin(t));
return Matrix<2, 2, T>(
c, -s,
s, c);
}
template<typename T>
inline Matrix<2, 2, T> MakeScale(T x, T y)
{
return Matrix<2, 2, T>(
x, static_cast<T>(0),
static_cast<T>(0), y);
}
#pragma endregion
}
#endif