-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
255 lines (216 loc) · 8.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import random
import shutil
import numpy as np
import torch
try:
torch.multiprocessing.set_start_method("spawn")
except RuntimeError:
pass
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torchvision
from inference import inductive, transductive
from ops import dataset_config
from ops.ata import ATA
from ops.dataset import TSNDataSet
from ops.models import TSN
from ops.samplers import CategoriesSampler
from ops.transforms import GroupCenterCrop, GroupNormalize, GroupScale, IdentityTransform, Stack, ToTorchFormatTensor
from opts import parser
from train import train
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.benchmark = True
num_class, args.train_list, args.val_list, args.root_path, prefix = dataset_config.return_dataset(
args.dataset, args.modality
)
full_arch_name = args.arch
args.store_name = "_".join(
[args.dataset, args.modality, full_arch_name, "segment%d" % args.num_segments, "e{}".format(args.epochs)]
)
if args.pretrain != "imagenet":
args.store_name += "_{}".format(args.pretrain)
if args.lr_type != "step":
args.store_name += "_{}".format(args.lr_type)
if args.dense_sample:
args.store_name += "_dense"
if args.suffix is not None:
args.store_name += "_{}".format(args.suffix)
print("storing name: " + args.store_name)
check_rootfolders()
model = TSN(
num_class,
args.num_segments,
args.modality,
base_model=args.arch,
dropout=args.dropout,
img_feature_dim=args.img_feature_dim,
partial_bn=not args.no_partialbn,
pretrain=args.pretrain,
fc_lr5=not (args.tune_from and args.dataset in args.tune_from),
)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
if "something" == args.dataset or "jester" == args.dataset:
flip = False
else:
flip = True
train_augmentation = model.get_augmentation(flip=flip, dataset=args.dataset)
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
optimizer = torch.optim.SGD(policies, args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume, "cpu")
args.start_epoch = checkpoint["epoch"]
best_prec1 = checkpoint["best_prec1"]
model.load_state_dict(checkpoint["state_dict"])
print(("=> loaded checkpoint '{}' (epoch {})".format(args.evaluate, checkpoint["epoch"])))
del checkpoint
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
cudnn.benchmark = True
# Data loading code
if args.modality != "RGBDiff":
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
if args.modality == "RGB":
data_length = 1
elif args.modality in ["Flow", "RGBDiff"]:
data_length = 5
train_dataset = TSNDataSet(
args.root_path,
args.train_list,
num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
transform=torchvision.transforms.Compose(
[
train_augmentation,
Stack(roll=(args.arch in ["BNInception", "InceptionV3"])),
ToTorchFormatTensor(div=(args.arch not in ["BNInception", "InceptionV3"])),
normalize,
]
),
dense_sample=args.dense_sample,
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
drop_last=True,
)
val_dataset = TSNDataSet(
args.root_path,
args.val_list,
num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
random_shift=False,
transform=torchvision.transforms.Compose(
[
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(roll=(args.arch in ["BNInception", "InceptionV3"])),
ToTorchFormatTensor(div=(args.arch not in ["BNInception", "InceptionV3"])),
normalize,
]
),
dense_sample=args.dense_sample,
)
val_sampler = CategoriesSampler(val_dataset.label, args.episodes, args.way, args.shot + args.n_query)
val_loader = torch.utils.data.DataLoader(
val_dataset, num_workers=args.workers, batch_sampler=val_sampler, pin_memory=True
)
ata_helper = ATA(num_segments=args.num_segments)
for group in policies:
print(
(
"group: {} has {} params, lr_mult: {}, decay_mult: {}".format(
group["name"], len(group["params"]), group["lr_mult"], group["decay_mult"]
)
)
)
log = open(os.path.join(args.root_log, args.store_name, "log.csv"), "w")
with open(os.path.join(args.root_log, args.store_name, "args.txt"), "w") as f:
f.write(str(args))
if args.evaluate:
if args.transductive:
transductive(val_loader, model, ata_helper, args, log)
else:
inductive(val_loader, model, ata_helper, args, log)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_type, args.lr_steps)
# train for one epoch
train(train_loader, model, ata_helper, optimizer, epoch, num_class, args, log)
# evaluate on validation set
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
prec1 = inductive(val_loader, model, ata_helper, args, log)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
output_best = "Best Prec@1: %.3f\n" % (best_prec1)
print(output_best)
log.write(output_best + "\n")
log.flush()
save_checkpoint(
{
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"best_prec1": best_prec1,
},
is_best,
)
def save_checkpoint(state, is_best):
filename = "%s/%s/ckpt%s.pth.tar" % (args.root_model, args.store_name, str(state["epoch"]))
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace("pth.tar", "best.pth.tar"))
def adjust_learning_rate(optimizer, epoch, lr_type, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if lr_type == "step":
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
elif lr_type == "cos":
import math
lr = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.epochs))
decay = args.weight_decay
else:
raise NotImplementedError
for param_group in optimizer.param_groups:
param_group["lr"] = lr * param_group["lr_mult"]
param_group["weight_decay"] = decay * param_group["decay_mult"]
def check_rootfolders():
"""Create log and model folder"""
folders_util = [
args.root_log,
args.root_model,
os.path.join(args.root_log, args.store_name),
os.path.join(args.root_model, args.store_name),
]
for folder in folders_util:
if not os.path.exists(folder):
print("creating folder " + folder)
os.makedirs(folder)
if __name__ == "__main__":
main()