-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathgenerate_blur.py
53 lines (39 loc) · 1.62 KB
/
generate_blur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
import cv2
import numpy as np
import os.path as osp
import torch
import utils.util as util
import yaml
from models.kernel_encoding.kernel_wizard import KernelWizard
def main():
device = torch.device("cuda")
parser = argparse.ArgumentParser(description="Kernel extractor testing")
parser.add_argument("--image_path", action="store", help="image path", type=str, required=True)
parser.add_argument("--yml_path", action="store", help="yml path", type=str, required=True)
parser.add_argument("--save_path", action="store", help="save path", type=str, default=".")
parser.add_argument("--num_samples", action="store", help="number of samples", type=int, default=1)
args = parser.parse_args()
image_path = args.image_path
yml_path = args.yml_path
num_samples = args.num_samples
# Initializing mode
with open(yml_path, "r") as f:
opt = yaml.load(f)["KernelWizard"]
model_path = opt["pretrained"]
model = KernelWizard(opt)
model.eval()
model.load_state_dict(torch.load(model_path))
model = model.to(device)
HQ = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) / 255.0
HQ = np.transpose(HQ, (2, 0, 1))
HQ_tensor = torch.Tensor(HQ).unsqueeze(0).to(device).cuda()
for i in range(num_samples):
print(f"Sample #{i}/{num_samples}")
with torch.no_grad():
kernel = torch.randn((1, 512, 2, 2)).cuda() * 1.2
LQ_tensor = model.adaptKernel(HQ_tensor, kernel)
dst = osp.join(args.save_path, f"blur{i:03d}.png")
LQ_img = util.tensor2img(LQ_tensor)
cv2.imwrite(dst, LQ_img)
main()