-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
371 lines (298 loc) · 13.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import json
import os
import numpy as np
import torch
import torchvision
from pytorch_fid.fid_score import calculate_fid_given_paths
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
# %% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t**2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1.0 - torch.exp(2.0 * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1.0 - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1.0 - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1 - betas)
return sigmas, a_s, betas
# %% posterior sampling
class Posterior_Coefficients:
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
# we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(
torch.tensor([1.0], dtype=torch.float32, device=device),
self.alphas_cumprod[:-1],
),
0,
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.posterior_mean_coef2 = (
(1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod)
)
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def sample_posterior(coefficients, x_0, x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = 1 - (t == 0).type(torch.float32)
return mean + nonzero_mask[:, None, None, None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt):
x = x_init
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0 = generator(x, t_time, latent_z)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
x
return x
# %%
def sample_and_test(args, epoch_id):
torch.manual_seed(42)
device = "cuda:0"
print(f"Epoch {epoch_id}")
algo = "rduot"
if args.phi1 == "none":
algo = "ddgan"
samples_dir = f"./generated_samples/{algo}/{args.dataset}"
result_dir = f"./saved_info/{algo}/{args.dataset}"
save_dir = f"./generated_samples/{algo}/{args.dataset}"
if args.perturb_percent > 0:
samples_dir += f"_{int(args.perturb_percent)}p_{args.perturb_dataset}"
result_dir += f"_{int(args.perturb_percent)}p_{args.perturb_dataset}"
save_dir += f"_{int(args.perturb_percent)}p_{args.perturb_dataset}"
samples_folder = samples_dir + f"/{args.version}"
result_folder = result_dir + f"/{args.version}/fid_1.12"
save_dir += f"/{args.version}"
result_dir += f"/{args.version}/netG_{epoch_id}.pth"
if args.dataset == "cifar10":
real_img_dir = "pytorch_fid/cifar10_train_stat.npy"
elif args.dataset == "lsun":
real_img_dir = "pytorch_fid/lsun_church_stat.npy"
elif args.dataset == "stl10":
real_img_dir = "pytorch_fid/stl10_stat.npy"
elif args.dataset == "celeba_64":
real_img_dir = "pytorch_fid/celeba_train_stat.npy"
elif args.dataset == "celebahq_256" or args.dataset == "celeba_hq":
real_img_dir = "pytorch_fid/celebahq_train_stat.npy"
else:
real_img_dir = args.real_img_dir
print(real_img_dir)
def to_range_0_1(x):
return (x + 1.0) / 2.0
if not os.path.exists(result_folder):
os.makedirs(result_folder)
json_filename = f"{result_folder}/stat.json"
print(json_filename)
netG = NCSNpp(args).to(device)
ckpt = torch.load(result_dir, map_location=device)
# loading weights from ddp in single gpu
for key in list(ckpt.keys()):
ckpt[key[7:]] = ckpt.pop(key)
netG.load_state_dict(ckpt)
netG.eval()
T = get_time_schedule(args, device)
pos_coeff = Posterior_Coefficients(args, device)
iters_needed = 50000 // args.batch_size
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(samples_folder):
os.makedirs(samples_folder)
if args.compute_fid:
for i in range(iters_needed):
with torch.no_grad():
x_t_1 = torch.randn(args.batch_size, args.num_channels, args.image_size, args.image_size).to(device)
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args)
fake_sample = to_range_0_1(fake_sample)
for j, x in enumerate(fake_sample):
index = i * args.batch_size + j
torchvision.utils.save_image(x, f"{samples_folder}/{index}.jpg")
print("generating batch ", i)
paths = [save_dir, real_img_dir]
kwargs = {"batch_size": 100, "device": device, "dims": 2048}
# Specify the filename for the JSON file
fid = calculate_fid_given_paths(paths=paths, **kwargs)
print("FID = {}".format(fid))
data = {"fid": fid}
if not os.path.exists(json_filename):
data = {}
with open(json_filename, "w") as json_file:
json.dump(data, json_file)
with open(json_filename, "r") as file:
data = json.load(file)
data[f"Epoch {epoch_id}"] = fid
data = dict(sorted(data.items(), key=lambda x: int(str(x[0]).split()[1])))
with open(json_filename, "w") as json_file:
json.dump(data, json_file)
else:
x_t_1 = torch.randn(args.batch_size, args.num_channels, args.image_size, args.image_size).to(device)
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args)
fake_sample = to_range_0_1(fake_sample)
torchvision.utils.save_image(fake_sample, "./samples_{}.jpg".format(args.dataset))
if __name__ == "__main__":
parser = argparse.ArgumentParser("ddgan parameters")
parser.add_argument("--seed", type=int, default=1024, help="seed used for initialization")
parser.add_argument(
"--compute_fid",
action="store_true",
default=False,
help="whether or not compute FID",
)
parser.add_argument("--num_channels", type=int, default=3, help="channel of image")
parser.add_argument("--centered", action="store_false", default=True, help="-1,1 scale")
parser.add_argument("--use_geometric", action="store_true", default=False)
parser.add_argument("--beta_min", type=float, default=0.1, help="beta_min for diffusion")
parser.add_argument("--beta_max", type=float, default=20.0, help="beta_max for diffusion")
parser.add_argument(
"--num_channels_dae",
type=int,
default=64,
help="number of initial channels in denosing model",
)
parser.add_argument("--n_mlp", type=int, default=4, help="number of mlp layers for z")
parser.add_argument("--ch_mult", nargs="+", type=int, help="channel multiplier")
parser.add_argument(
"--num_res_blocks",
type=int,
default=2,
help="number of resnet blocks per scale",
)
parser.add_argument("--attn_resolutions", default=(16,), help="resolution of applying attention")
parser.add_argument("--dropout", type=float, default=0.0, help="drop-out rate")
parser.add_argument(
"--resamp_with_conv",
action="store_false",
default=True,
help="always up/down sampling with conv",
)
parser.add_argument("--conditional", action="store_false", default=True, help="noise conditional")
parser.add_argument("--fir", action="store_false", default=True, help="FIR")
parser.add_argument("--fir_kernel", default=[1, 3, 3, 1], help="FIR kernel")
parser.add_argument("--skip_rescale", action="store_false", default=True, help="skip rescale")
parser.add_argument(
"--resblock_type",
default="biggan",
help="tyle of resnet block, choice in biggan and ddpm",
)
parser.add_argument(
"--progressive",
type=str,
default="none",
choices=["none", "output_skip", "residual"],
help="progressive type for output",
)
parser.add_argument(
"--progressive_input",
type=str,
default="residual",
choices=["none", "input_skip", "residual"],
help="progressive type for input",
)
parser.add_argument(
"--progressive_combine",
type=str,
default="sum",
choices=["sum", "cat"],
help="progressive combine method.",
)
parser.add_argument(
"--embedding_type",
type=str,
default="positional",
choices=["positional", "fourier"],
help="type of time embedding",
)
parser.add_argument("--fourier_scale", type=float, default=16.0, help="scale of fourier transform")
parser.add_argument("--not_use_tanh", action="store_true", default=False)
# geenrator and training
parser.add_argument("--exp", default="experiment_cifar_default", help="name of experiment")
parser.add_argument(
"--real_img_dir",
default="./pytorch_fid/cifar10_train_stat.npy",
help="directory to real images for FID computation",
)
parser.add_argument("--dataset", default="cifar10", help="name of dataset")
parser.add_argument("--image_size", type=int, default=32, help="size of image")
parser.add_argument("--nz", type=int, default=100)
parser.add_argument("--num_timesteps", type=int, default=4)
parser.add_argument("--z_emb_dim", type=int, default=256)
parser.add_argument("--t_emb_dim", type=int, default=256)
parser.add_argument("--batch_size", type=int, default=100, help="sample generating batch size")
parser.add_argument("--version", type=str, default="1", help="result version")
parser.add_argument("--index", type=str, default="1", help="also version, but for the saved results")
parser.add_argument("--master_port", type=str, default="6020", help="master port number")
parser.add_argument("--perturb_dataset", default="none", help="name of data added to the dataset")
parser.add_argument("--perturb_percent", type=float, default=0, help="percentage of perturb_data")
# Loss configurations
parser.add_argument("--phi1", type=str, default="softplus", choices=["linear", "kl", "softplus", "chi"])
parser.add_argument("--phi2", type=str, default="softplus", choices=["linear", "kl", "softplus", "chi"])
parser.add_argument("--tau", type=float, default=0.001, help="proportion of the cost c")
parser.add_argument(
"--schedule",
type=int,
default=1800,
help="cosine scheduler, learning rate 1e-5 until {schedule} epoch",
)
parser.add_argument("--epoch_start", type=int, default=1000)
parser.add_argument("--epoch_end", type=int, default=1000)
parser.add_argument("--epoch_jump", type=int, default=25)
args = parser.parse_args()
for epoch_id in range(args.epoch_start, args.epoch_end + 1, args.epoch_jump):
sample_and_test(args=args, epoch_id=epoch_id)