-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQAOA_gen.py
208 lines (164 loc) · 7.86 KB
/
QAOA_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
We use n(n-1) qubits for the adj matrix and n(n-1)/2 qubits for the transition matrix
"""
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from itertools import combinations
m = 2
def mapping_mat_vec(n, row, col):
index = 0
for i in range(n):
for j in range(n):
if i != j:
if i == row and j == col:
return index
else:
index = index + 1
def mapping_vec_mat(n, index):
index_new = 0
for i in range(n):
for j in range(n):
if i != j:
if index == index_new:
return i, j
else:
index_new = index_new + 1
def state_2_str(state):
return str(state)[1:len(str(state)) - 1]
class QAOA:
layers = 0
def __init__(self, n, alpha1, alpha2, weights):
assert isinstance(weights, dict), 'Length of weights matrix is different than expected'
self.n = n
self.alpha1 = alpha1
self.alpha2 = alpha2
self.q_adj = n * (n - 1) # number of qubits for the adj matrix
self.q_r = (n * (n - 1)) / 2 # number of qubits for the transition matrix
# weights is a matrix of elements whose keys are tuples of first element the target and following the parents
self.weights = weights
# Create quantum circuit
nqubits = int(self.q_adj + self.q_r)
self.qreg = QuantumRegister(nqubits)
self.creg = ClassicalRegister(nqubits)
self.circuit = QuantumCircuit(self.qreg, self.creg)
self.adders = []
self.gen_adders()
def index_adj_adder(self, i, j):
assert i != j, "Diagonal adjacency indexes must not be taken into account"
if j > i:
return (i * self.n) + j - (i + 1)
else:
return (i * self.n) + j - i
def index_r_adder(self, i, j):
assert i < j, "Diagonal r indexes must not be taken into account"
aux = self.n * (self.n - 1)
return aux + (i * self.n) + j - int(((i + 2) * (i + 1)) / 2)
def gen_adders(self):
# Transcription of the general formulas of hamiltonian to general indexes of qubits
for i in range(self.n):
for j in range(i + 1, self.n):
for k in range(j + 1, self.n):
self.adders.append([self.alpha1, self.index_r_adder(i, k)])
self.adders.append([self.alpha1, self.index_r_adder(i, j), self.index_r_adder(j, k)])
self.adders.append([-self.alpha1, self.index_r_adder(i, j), self.index_r_adder(i, k)])
self.adders.append([-self.alpha1, self.index_r_adder(j, k), self.index_r_adder(i, k)])
for i in range(self.n):
for j in range(i + 1, self.n):
self.adders.append([self.alpha2, self.index_adj_adder(j, i), self.index_r_adder(i, j)])
self.adders.append([self.alpha2, self.index_adj_adder(i, j)])
self.adders.append([-self.alpha2, self.index_adj_adder(i, j), self.index_r_adder(i, j)])
def evaluate_solution(self, string):
to_bin = []
for i in range(len(string)):
to_bin.append(int(string[i]))
cost = 0
# multiplication of combination of 2-nodes and weight(node|2parents)
for i in range(self.n):
# array = to_bin[i * (self.n - 1): i * (self.n - 1) + (self.n - 1)] # separate each row of adj matrix
array = [[to_bin[mapping_mat_vec(self.n, k, i)], mapping_mat_vec(self.n, k, i)]
for k in range(self.n) if k != i] # separate each col adj m
sum_col = sum([k[0] for k in array])
if sum_col > m:
# cases with more than m parents
cost = cost + 99999999 # penalize
else:
# cases of 0, 1 or 2 parents
# find index of each 1
# indexes = [j * (self.n-1) for j, x in enumerate(array) if x == 1] # index general array(no diagonal)
indexes = [k[1] for k in array if k[0] == 1] # index general array(no diagonal)
if len(indexes) == 1:
# weight (i | index)
row, col = mapping_vec_mat(self.n, indexes[0])
value = self.weights[i, row]
cost = cost + value
elif len(indexes) == 2:
# weight (i | index, index)
row1, col1 = mapping_vec_mat(self.n, indexes[0])
row2, col2 = mapping_vec_mat(self.n, indexes[1])
value = self.weights[i, row1, row2]
cost = cost + value
else:
# 0
cost = cost + self.weights[i]
pass
# restrictions
for i in self.adders:
if len(i) == 2:
cost = cost + i[0] * to_bin[i[1]]
if len(i) == 3:
cost = cost + i[0] * (to_bin[i[1]] * to_bin[i[2]])
return cost
def add_superposition_layer(self):
# Superposition
for i in range(len(self.qreg)):
self.circuit.h(self.qreg[i])
def spin_mult(self, spins, gamma):
if len(spins) == 0 or len(spins) > 4:
raise Exception('number of spins does not match the function requirements')
if not isinstance(spins, list):
raise Exception('A list is required as argument "spins"')
for i in range(len(spins) - 1):
self.circuit.cnot(spins[i], spins[len(spins) - 1])
self.circuit.rz(gamma, spins[len(spins) - 1])
for i in range(len(spins) - 2, -1, -1):
self.circuit.cnot(spins[i], spins[len(spins) - 1])
def adj_mult(self, adjs, gamma, coef):
if not isinstance(adjs, list):
raise Exception('A list is required as argument "adjs"')
if len(adjs) == 0 or len(adjs) > 4:
raise Exception('number of adj indexes does not match the function requirements')
angle = coef * (gamma * 2) / (2 ** (len(adjs)))
for adj in adjs:
self.circuit.rz(-angle, self.qreg[adj])
for tam in range(2, len(adjs) + 1):
for comb in combinations(adjs, tam):
self.spin_mult([self.qreg[i] for i in list(comb)], angle)
def add_layer(self, nlayers, beta, gamma):
for lay in range(nlayers):
# Phase Operator
# multiplication of each isolated and weight(node|1parent)
for i in range(self.n):
for j in range(self.n):
if i != j:
# in qubit i, j is the weight of j->i
value = (-1) * (self.weights[i, j] - self.weights[i]) # subtract w_i({null})
self.circuit.rz(gamma[lay] * value, self.qreg[self.index_adj_adder(j, i)])
# multiplication of combination of 2-nodes and weight(node|2parents) in same adj col
for i in range(self.n):
array = [k for k in range(self.n) if k != i]
perm = combinations(array, m)
for per in perm:
# i | perm, perm
value = self.weights[i, per[0], per[1]] + self.weights[i] - \
self.weights[i, per[0]] - self.weights[i, per[1]]
self.adj_mult([self.index_adj_adder(per[0], i), self.index_adj_adder(per[1], i)],
gamma[lay], value) # coef = 1 -> not in the restrictions
# multiplication of each of the couple restrictions
for i in self.adders:
self.adj_mult(i[1:], gamma[lay], i[0])
# Mixing Operator
for i in range(len(self.qreg)):
self.circuit.rx(2*beta[lay], self.qreg[i])
def measure(self):
self.circuit.measure(range(len(self.qreg)), range(len(self.qreg)-1, -1, -1))