forked from ematvey/gostat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeta.go
310 lines (274 loc) · 6.42 KB
/
beta.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Beta distribution
package stat
import (
"fmt"
"math"
. "github.com/ematvey/go-fn/fn"
)
func bisect(x, p, a, b, xtol, ptol float64) float64 {
var x0, x1, px float64
cdf := Beta_PDF(a, b)
for math.Abs(x1-x0) > xtol {
px = cdf(x)
switch {
case math.Abs(px-p) < ptol:
return x
case px < p:
x0 = x
case px > p:
x1 = x
}
x = 0.5 * (x0 + x1)
}
return x
}
func betaContinuedFraction(α, β, x float64) float64 {
var aa, del, res, qab, qap, qam, c, d, m2, m, acc float64
var i int64
const eps = 2.2204460492503131e-16
const maxIter = 1000000000
acc = 1e-16
qab = α + β
qap = α + 1.0
qam = α - 1.0
c = 1.0
d = 1.0 - qab*x/qap
if math.Abs(d) < eps {
d = eps
}
d = 1.0 / d
res = d
for i = 1; i <= maxIter; i++ {
m = (float64)(i)
m2 = 2 * m
aa = m * (β - m) * x / ((qam + m2) * (α + m2))
d = 1.0 + aa*d
if math.Abs(d) < eps {
d = eps
}
c = 1.0 + aa/c
if math.Abs(c) < eps {
c = eps
}
d = 1.0 / d
res *= d * c
aa = -(α + m) * (qab + m) * x / ((α + m2) * (qap + m2))
d = 1.0 + aa*d
if math.Abs(d) < eps {
d = eps
}
c = 1.0 + aa/c
if math.Abs(c) < eps {
c = eps
}
d = 1.0 / d
del = d * c
res *= del
if math.Abs(del-1.0) < acc {
return res
}
}
panic(fmt.Sprintf("betaContinuedFraction(): α or β too big, or maxIter too small"))
return -1.00
}
func Beta_PDF(α float64, β float64) func(x float64) float64 {
dα := []float64{α, β}
dirPDF := Dirichlet_PDF(dα)
return func(x float64) float64 {
if 0 > x || x > 1 {
return 0
}
dx := []float64{x, 1 - x}
return dirPDF(dx)
}
}
func Beta_LnPDF(α float64, β float64) func(x float64) float64 {
dα := []float64{α, β}
dirLnPDF := Dirichlet_LnPDF(dα)
return func(x float64) float64 {
if 0 > x || x > 1 {
return negInf
}
dx := []float64{x, 1 - x}
return dirLnPDF(dx)
}
}
func NextBeta(α float64, β float64) float64 {
dα := []float64{α, β}
return NextDirichlet(dα)[0]
}
func Beta(α float64, β float64) func() float64 {
return func() float64 { return NextBeta(α, β) }
}
// Value of PDF of Beta distribution(α, β) at x
func Beta_PDF_At(α, β, x float64) float64 {
pdf := Beta_PDF(α, β)
return pdf(x)
}
// CDF of Beta-distribution
func Beta_CDF(α float64, β float64) func(x float64) float64 {
return func(x float64) float64 {
//func Beta_CDF(α , β , x float64) float64 {
var y, res float64
y = math.Exp(LnΓ(α+β) - LnΓ(α) - LnΓ(β) + α*math.Log(x) + β*math.Log(1.0-x))
switch {
case x == 0:
res = 0.0
case x == 1.0:
res = 1.0
case x < (α+1.0)/(α+β+2.0):
res = y * betaContinuedFraction(α, β, x) / α
default:
res = 1.0 - y*betaContinuedFraction(β, α, 1.0-x)/β
}
return res
}
}
// Value of CDF of Beta distribution(α, β) at x
func Beta_CDF_At(α, β, x float64) float64 {
var res float64
cdf := Beta_CDF(α, β)
res = cdf(x)
return res
}
// BetaInv_CDF_For() evaluates inverse CDF of Beta distribution(α, β) for probability p
//
// References:
//
// Roger W. Abernathy and Robert P. Smith. "Applying Series Expansion
// to the Inverse Beta Distribution to Find Percentiles of the
// F-Distribution," ACM Transactions on Mathematical Software, volume
// 19, number 4, December 1993, pages 474-480.
//
// G.W. Hill and A.W. Davis. "Generalized asymptotic expansions of a
// Cornish-Fisher type," Annals of Mathematical Statistics, volume 39,
// number 8, August 1968, pages 1264-1273.
/*
func BetaInv_CDF_For(α float64, β float64, p float64) float64 {
var res float64
switch {
case (p < 0.0 || p > 1.0):
panic(fmt.Sprintf("p must be in range 0 < p < 1"))
res = -1.00
case α < 0.0:
panic(fmt.Sprintf("α < 0"))
res = -1.00
case β < 0.0:
panic(fmt.Sprintf("β < 0"))
res = -1.00
case p == 0.0:
res = 0.0
case p == 1.0:
res = 1.0
case p > 0.5:
res = 1 - cdf_beta_Pinv(1-p, β, α)
default:
res = cdf_beta_Pinv(α, β, p)
}
return res
}
func cdf_beta_Pinv(α float64, β float64, p float64) float64 {
var x, mean, lg_ab, lg_a, lg_b, lx, lambda, dP, phi, step, step0, step1 float64
var n int64 = 0
// const tol = 1.4901161193847656e-08
const tol = 5
mean = α / (α + β)
if p < 0.1 {
// small x
lg_ab = LnΓ(α + β)
lg_a = LnΓ(α)
lg_b = LnΓ(β)
lx = (math.Log(α) + lg_a + lg_b - lg_ab + math.Log(p)) / α
if lx <= 0 {
x = math.Exp(lx) // first approximation
x *= math.Pow(1-x, -(β-1)/α) // second approximation
} else {
x = mean
}
if x > mean {
x = mean
}
} else {
// Use expected value as first guess
x = mean
}
// Do bisection to get closer
x = bisect(x, p, α, β, 0.01, 0.01)
step0 = 999999
end:
for math.Abs(step0) > 1e-11*x {
dP = p - Beta_CDF_At(α, β, x)
phi = Beta_PDF_At(α, β, x)
if dP == 0.0 || n > 64 {
break end
}
n++
lambda = dP / math.Max(2*math.Abs(dP/x), phi)
step0 = lambda
step1 = -((α-1)/x - (β-1)/(1-x)) * lambda * lambda / 2
step = step0
if math.Abs(step1) < math.Abs(step0) {
step += step1
} else {
// scale back step to a reasonable size when too large
step *= 2 * math.Abs(step0/step1)
}
if x+step > 0 && x+step < 1 {
x += step
} else {
x = math.Sqrt(x) * math.Sqrt(mean) // try a new starting point
}
if math.Abs(dP) > tol*p {
// fmt.Println("failed at: α =",α , " β =", β, " p =", p) // just for testing purposes; delete this line and uncomment next one
// panic(fmt.Sprintf("cdf_beta_Pinv() failed to converge"))
x=999.00; break end
}
}
return x
}
*/
// Inverse of the cumulative beta probability density function for a given probability.
//
// p: Probability associated with the beta distribution
// α: Parameter of the distribution
// β: Parameter of the distribution
// A: Optional lower bound to the interval of x
// B: Optional upper bound to the interval of x
func BetaInv_CDF(α, β float64) func(p float64) float64 {
return func(p float64) float64 {
var x float64 = 0
var a float64 = 0
var b float64 = 1
var A float64 = 0
var B float64 = 1
var precision float64 = 1e-9
if p < 0.0 {
panic(fmt.Sprintf("p < 0"))
}
if p > 1.0 {
panic(fmt.Sprintf("p > 1.0"))
}
if α < 0.0 {
panic(fmt.Sprintf("α < 0.0"))
}
if β < 0.0 {
panic(fmt.Sprintf("β < 0.0"))
}
for (b - a) > precision {
x = (a + b) / 2
if BetaIncReg(α, β, x) > p {
b = x
} else {
a = x
}
}
if B > 0 && A > 0 {
x = x*(B-A) + A
}
return x
}
}
func BetaInv_CDF_For(α, β, p float64) float64 {
cdf := BetaInv_CDF(α, β)
return cdf(p)
}