-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin43testactivity.m
135 lines (113 loc) · 5.03 KB
/
in43testactivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%1D morphodynamical model with gradually varied flow
%for bifurcated and confluencing river networks
%by Maarten Kleinhans, April 2009
%provides input for takke43.m model
%%
%switches in model
switchC = 2; %if 1 then constant C, if 2 then White-Colebrook_rough constant kc
switchtransp = 1; %if 1 then Engelund-Hansen, if 2 then MPM_adapted
switchnodal = 3; %if 1 then Wang, if 2 then Bolla, if 3 then MEANDERING
switchBvar = 1; %if 1 then constant, if 2 then variable downstream widths hydraulic geometry
switchRvar = 3; %if 1 then constant bend radius, 2 switching meander migration, 3 sinusoidal migration
switchCour = 2; %if 1 then constant time step, if 2 then critical courant adaptation
%switches for figures (1=make, 0=do not make)
switchfig1 = 1; %time series of water and bed levels
switchfig2 = 1; %time series of relative discharge in bifurcated branches
switchfig3 = 0; %comparison of water depths
switchfig4 = 1; %-year evolution of long profile
switchfig5 = 0; %nodal point representation Qs2/Qs3 vs Q2/Q3
switchfig6 = 0; %time-series downstream widths
%%
%INPUT sizes and topology
%upstream connections: (none if upstream boundary, one if bifur, two if confluence)
%downstream connections: (none if sea, one if confluence, two if bifurcation)
%confluences: upstream branches MUST have same order, if necessary add branch
%Orde = from.. to.. branches in same bifurcation 'order'
Orde = [...
1 1;...1
2 3;...2
];
%Topo = (upstr1,upstr2,downstr1,downstr2) for each branch
Topo = [...
NaN NaN 2 3 ; ...1
1 NaN NaN NaN ; ...2
1 NaN NaN NaN ; ...3
];
%Sizes = (Q,L,D50 (mm),Mudpercentage) for each branch
Sizes = [...
2500 6000 2 0; ...1
1250 6000 2 0; ...2
1250 6000 2 0; ...3
];
%Activity = (begin of activity (cal yr BP),end of activity) for each branch
Activity = [...
25 0; ...1
25 0; ...2
25 0; ...3
];
%Bifurcations = (heightaboveNAP,Rfac,Tbend,Lbend,Abend)
%for the upstream boundary, each bifurcation
%Upstream bend: relative bend radius R/W at each bifurcation
%bifurcate 2 is outer bend for positive (for variable R switchRvar=2)
%bifurcate 3 is inner bend for positive (for variable R switchRvar=2)
%period (yr) at which bend radius changes sign, REAL period is 2Tbend!
%(for variable R switchRvar=2 and 3 resp)
Bifurcations = [...
1.2 NaN NaN NaN NaN ; ...upstream boundary
0.6 1 20 8000 2000 ; ...bifurcation 1 (most upstream)
];
%Confluences = heightaboveNAP for confluences
Confluences = [...
...confluence 1 (most upstream)
];
%Connections = heightaboveNAP for throughflow connection nodes
Connections = [...
...node 1 (most upstream)
];
Bup = 504; %upstream width
%Basin (local datum)
xi0 = 0; %initial downstream water level
baselevelrise = 0.000; %rate in m per year
%%
%schematisation
%space
dx = 500; %m spatial step
au = 1.0; %1 = full upwind, 0.5 = central difference
waterlevelprecision = 1e-3; %1e-4
dischargeprecision = 1e-1; %1e-2
maxiter = 10; %20 maximum number of backwater iterations at a bifurcation
%Hmin = 0.8; %minimum water depth
%time
Durat = 25; %50 years duration
dt = 0.01; %initial 0.01 year time step
CourantCrit = 0.8; %au-0.1;% critical courant number for decreasing the time step
dtmin = dt/3; %minimum time step regardless of Courant criterion
maxNt = 3; %maximum exceedance factor of expected time steps
%reports
Nreport = 10; %nr of reports for bed and water level curves (>6 cyclic colors)
%Tectonics in both bifurcates gradual uplift (+) or downwarp (-) of bed
%etatect = [0 0 0 0 0 0 0].*1e-3; %tectonics rate in m per year
%ftect = [0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1]; %fraction of L for up/downstream end of 'tectonic block'
%location in xcoord for report full time series of base, water, bed levels and Cr
%frep = [0.95 0.05 0.05 0.05 0.05 0.05 0.05]; %fractions of Li for time report
%nu even automatisch goed:
etatect = [ zeros(1,length(Topo(:,1))) ];
ftect = [ zeros(1,length(Topo(:,1))) ; ones(1,length(Topo(:,1))) ];
frep = [ ones(1,length(Topo(:,1))) ] .*0.05;
%%
%constants
Qbreak = 1000; %discharge at which one branch is considered closed
If = 1; %Intermittency
lamp = 0.3; %Bed Porosity
kc = 0.15; %m Roughness Height, not necessary to calibrate for WhiteColebrook
bB = 1; %0.6 power on discharge Q for hydraulic geometry
bD = -0.; %-0.25 power on diameter D for hydraulic geometry
bM = -0.; %-0.37 power on mud percentage M for hydraulic geometry
%tons/a Imposed annual sediment transport rate fed in from upstream (which must all be carried during floods)
%Gtf = 1.625E+06; %1e6 NOT USED
%nodal point constants
k = 1; %2 POWER OF Wang NODAL POINT RELATION
alb = 1; %1, r parameter in Ikeda/Bolla NODAL POINT RELATION
%calibrated on Delft3D:
alw = 2; %2, alpha parameter in Bolla NODAL POINT RELATION
epsilon = 2; %2, spiral flow calibration parameter