-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerateData.py
227 lines (195 loc) · 8.82 KB
/
GenerateData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#############################################################################################
### This file is used to generate Data needed for "PDE example.py" or "PDE example.ipynb" ###
#############################################################################################
import os
import numpy as np
import dolfin as fn
import scipy.io as sio
import numpy.polynomial.hermite_e as H
from scipy.stats import gaussian_kde as kde
from scipy.stats import norm
from math import factorial
## This is just set to be consistent with the number of files GenerateData_ParallelVersion.ipynb generates
proc_size = 25
#### To make it cleaner, create Directory "Data" to store all the data ####
datapath = os.path.join(os.getcwd(),"Data")
os.makedirs(datapath,exist_ok=True)
def Compute_Q(proc_num, proc_max, mu1=0, mu2=0, sigma1=0.1, sigma2=0.1, gridx=50, gridy=50, p=1):
num_quad = 20
lambda1 = H.hermegauss(num_quad)[0]
lambda2 = H.hermegauss(num_quad)[0]
# Create the characteristic function class used to define the QoI
class AvgCharFunc(fn.UserExpression):
def __init__(self, region, **kwargs):
self.a = region[0]
self.b = region[1]
self.c = region[2]
self.d = region[3]
super().__init__(**kwargs)
def eval(self, v, x):
v[0] = 0
if (x[0] >= self.a) & (x[0] <= self.b) & (x[1] >= self.c) & (x[1] <= self.d):
v[0] = 1./( (self.b-self.a) * (self.d-self.c) )
return v
def value_shape(self):
return ()
def QoI_FEM(lam1,lam2,pointa,pointb,gridx,gridy,p):
aa = pointa[0]
bb = pointb[0]
cc = pointa[1]
dd = pointb[1]
mesh = fn.UnitSquareMesh(gridx, gridy)
V = fn.FunctionSpace(mesh, "Lagrange", p)
# Define diffusion tensor (here, just a scalar function) and parameters
A = fn.Expression((('exp(lam1)','a'),
('a','exp(lam2)')), a = fn.Constant(0.0), lam1 = lam1, lam2 = lam2, degree=3)
u_exact = fn.Expression("sin(lam1*pi*x[0])*cos(lam2*pi*x[1])", lam1 = lam1, lam2 = lam2, degree=2+p)
# Define the mix of Neumann and Dirichlet BCs
class LeftBoundary(fn.SubDomain):
def inside(self, x, on_boundary):
return (x[0] < fn.DOLFIN_EPS)
class RightBoundary(fn.SubDomain):
def inside(self, x, on_boundary):
return (x[0] > 1.0 - fn.DOLFIN_EPS)
class TopBoundary(fn.SubDomain):
def inside(self, x, on_boundary):
return (x[1] > 1.0 - fn.DOLFIN_EPS)
class BottomBoundary(fn.SubDomain):
def inside(self, x, on_boundary):
return (x[1] < fn.DOLFIN_EPS)
# Create a mesh function (mf) assigning an unsigned integer ('uint')
# to each edge (which is a "Facet" in 2D)
mf = fn.MeshFunction('size_t', mesh, 1)
mf.set_all(0) # initialize the function to be zero
# Setup the boundary classes that use Neumann boundary conditions
NTB = TopBoundary() # instatiate
NTB.mark(mf, 1) # set all values of the mf to be 1 on this boundary
NBB = BottomBoundary()
NBB.mark(mf, 2) # set all values of the mf to be 2 on this boundary
NRB = RightBoundary()
NRB.mark(mf, 3)
# Define Dirichlet boundary conditions
Gamma_0 = fn.DirichletBC(V, u_exact, LeftBoundary())
bcs = [Gamma_0]
# Define data necessary to approximate exact solution
f = ( fn.exp(lam1)*(lam1*fn.pi)**2 + fn.exp(lam2)*(lam2*fn.pi)**2 ) * u_exact
#g1:#pointing outward unit normal vector, pointing upaward (0,1)
g1 = fn.Expression("-exp(lam2)*lam2*pi*sin(lam1*pi*x[0])*sin(lam2*pi*x[1])", lam1=lam1, lam2=lam2, degree=2+p)
#g2:pointing downward (0,1)
g2 = fn.Expression("exp(lam2)*lam2*pi*sin(lam1*pi*x[0])*sin(lam2*pi*x[1])", lam1=lam1, lam2=lam2, degree=2+p)
g3 = fn.Expression("exp(lam1)*lam1*pi*cos(lam1*pi*x[0])*cos(lam2*pi*x[1])", lam1=lam1, lam2=lam2, degree=2+p)
fn.ds = fn.ds(subdomain_data=mf)
# Define variational problem
u = fn.TrialFunction(V)
v = fn.TestFunction(V)
a = fn.inner(A*fn.grad(u), fn.grad(v))*fn.dx
L = f*v*fn.dx + g1*v*fn.ds(1) + g2*v*fn.ds(2) + g3*v*fn.ds(3) #note the 1, 2 and 3 correspond to the mf
# Compute solution
u = fn.Function(V)
fn.solve(a == L, u, bcs)
psi = AvgCharFunc([aa, bb, cc, dd], degree=0)
Q = fn.assemble(fn.project(psi * u, V) * fn.dx)
return Q
Q_FEM = np.zeros(400)
num_Q_per_proc = 400//proc_max
if proc_num != proc_size -1:
for i in range(proc_num*num_Q_per_proc, (proc_num+1)*num_Q_per_proc):
Q_FEM[i] = QoI_FEM(mu1+sigma1*lambda1[i%num_quad],mu2+sigma2*lambda2[i//num_quad],[0.4,0.4],[0.6,0.6],gridx,gridy,p)
else:
for i in range(proc_num*num_Q_per_proc,400):
Q_FEM[i] = QoI_FEM(mu1+sigma1*lambda1[i%num_quad],mu2+sigma2*lambda2[i//num_quad],[0.4,0.4],[0.6,0.6],gridx,gridy,p)
filename = os.path.join(os.getcwd(), "Data", "Q_FEM_quad_") + str(proc_num) + ".mat"
data_dict = {'Q_FEM': Q_FEM}
sio.savemat(filename, data_dict)
return
#########################################################
##### Generate datafiles Data/Q_FEM_quad_[0-24].mat #####
#########################################################
for i in range(proc_size):
Compute_Q(i, proc_max=proc_size)
def r(nn, proc_num, proc_max):
mu1 = 0
mu2 = 0
sigma1 = 0.1
sigma2 = 0.1
N_size = int(1E4)
np.random.seed(123456)
lam1 = np.random.normal(mu1,sigma1,N_size)
lam2 = np.random.normal(mu2,sigma2,N_size)
def Hermite_2d(i,j,x,y):
c = np.zeros((20,20))
c[i,j] = 1
return H.hermeval2d(x, y, c)
Q_FEM_quad = np.zeros(int(400)) #already include information of mu1, mu2, sigma1, sigma2
for i in range(proc_size):
filename = os.path.join(os.getcwd(), "Data", "Q_FEM_quad_") + str(i) + '.mat'
partial_data = sio.loadmat(filename)
Q_FEM_quad += partial_data['Q_FEM'].reshape(int(400))
def Phi(n):
#define H_n
coeffs = [0]*(n+1)
coeffs[n] = 1
return coeffs
def q(i,j):
x, w=H.hermegauss(20)
Q=sum([w[ldx]*sum([w[kdx] * Q_FEM_quad[ldx*20+kdx] * H.hermeval(x[kdx],Phi(i)) for kdx in range(20)])*H.hermeval(x[ldx],Phi(j)) for ldx in range(20)])
q= Q/(2*np.pi*factorial(i)*factorial(j))
return q
qij = np.zeros((10,10))
for i in range(10):
for j in range(10):
qij[i,j] = q(i,j)
def Q(n,x,y):
result = 0
for i in range(n+1):
for j in range(n+1):
if i+j <=n:
result += qij[i,j]*Hermite_2d(i,j,(x-mu1)/sigma1,(y-mu2)/sigma2)
return result
def Qexact(x,y,a=0.4,b=0.6,c=0.4,d=0.6):
sol = (np.cos(x*np.pi*a)-np.cos(x*np.pi*b))*(np.sin(y*np.pi*d)-np.sin(y*np.pi*c))/((b-a)*(d-c)*x*y*np.pi**2)
return sol
qexact = Qexact(lam1,lam2)
pfprior_dens = kde(qexact)
def pfprior_dens_n(n,x):
pfprior_sample_n = Q(n,lam1,lam2)
pdf = kde(pfprior_sample_n)
return pdf(x)
def pdf_obs(x):
return norm.pdf(x, loc=0.3, scale=0.1)
r = np.zeros(int(1E4))
num_r_per_proc = int(1E4)//proc_max
if proc_num != proc_size -1:
for i in range(proc_num*num_r_per_proc, (proc_num+1)*num_r_per_proc):
if nn == 0:
r[i] = pdf_obs(qexact[i])/pfprior_dens(qexact[i])
else:
q = Q(nn,lam1[i],lam2[i])
r[i] = pdf_obs(q)/pfprior_dens_n(nn,q)
elif proc_num == proc_size-1:
for i in range(proc_num*num_r_per_proc,int(1E4)):
if nn == 0:
r[i] = pdf_obs(qexact[i])/pfprior_dens(qexact[i])
else:
q = Q(nn,lam1[i],lam2[i])
r[i] = pdf_obs(q)/pfprior_dens_n(nn,q)
if nn == 0:
filename = os.path.join(os.getcwd(),"Data","r_") + str(proc_num) + '.mat'
else:
filename = os.path.join(os.getcwd(),"Data","r") + str(nn) + '_' + str(proc_num) + '.mat'
data_dict = {'r': r}
sio.savemat(filename, data_dict)
return
#########################################################
######### Generate datafiles Data/r_[0-24].mat ##########
######### Generate datafiles Data/r1_[0-24].mat #########
######### Generate datafiles Data/r2_[0-24].mat #########
######### Generate datafiles Data/r3_[0-24].mat #########
######### Generate datafiles Data/r4_[0-24].mat #########
######### Generate datafiles Data/r5_[0-24].mat #########
######### Generate datafiles Data/r6_[0-24].mat #########
#########################################################
nn = [0,1,2,3,4,5,6]
for i in range(len(nn)):
for j in range(proc_size):
r(nn[i], j, proc_max=proc_size)