forked from eosnas/Emperor-Goose-Harvest-Strategy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate.pop.R
134 lines (131 loc) · 6.6 KB
/
simulate.pop.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# simulate theta-logistic to find equilibrium at posterior mean
# Notes: (1) should population model be in terms of harvest rate? Functional response of hunters? --> yes, see below
# (2) add a revised observation model to reduce process variance,
# average observer effects and annual detection effects.
# 20210916 (1) revise to do forward sims based on harvest rate.
# This allows harvest to decline with population size.
# 20221116 (1) commented out dev models and worked on stochastic model
# (2) revised to fully sample posterior initial population size
# (N.tot in 2022)
# 20230629 (1) revised prediction model to reflect new (2023) jags model;
# this include observer-specific observation model and the current
# decision index of the average estimate between observers
# 2023???? (1) added permit harvest to model
# 20240118 worked to add multiple harvest strategies to population projection model,
# specifically:
# (1) deleted commented out dev code
# (2) renamed function to project_pop
# (3) moved functional response of harvest, (1 - exp(-0.0001*pop[t-1])),
# outside population projection step so that har[t] is realized harvest
# (4) modified function to define a management strategy:
# did this by making Hred and Hgreen a vector that defines harvest
# and t_close another vector that defines the thresholds
project_pop <- function(
#these inputs are scalar,
# can use a sample of posterior or a summary value (posterior mean)
#default is simulation at posterior mean
#also assume that the observers are constant for observation model
# even when stochastic = FALSE,
Tmax = 100,
n1 = out$mean$N.tot,
r = out$mean$r.max,
theta = out$mean$theta,
K = out$mean$CC,
Hlist = list(red = out$mean$m.har,
yellow = out$mean$m.har + (out$mean$mu.green - out$mean$m.har)/2,
green = out$mean$mu.green),
sdH = list(red = 0, yellow = 0, green = 0),
threshold = list(red = 23000, green = 28000), #closure threshold, 23000 is 2016 management plan default
Hp = list(green = out$mean$m.har.p), #permit harvest
sdHp = list(green = 0), #sd permit harvest
sdpop = 0,
q = out$mean$q,
alpha1 = c(out$mean$alpha1[5], out$mean$alpha1[10]), #default is HMW and MAS
sdesp = out$mean$sd.esp,
BETA = NA, #linear model slope
SE = NA, #linear model slope SE
SIGMA = NA, #linear model RMSE
DF = NA, #linear model degrees of freedom
crip = out$mean$c, #crippling probability
stochastic = TRUE){
pop <- har <- hunt <- obs <- numeric(Tmax+1) #rep(0, Tmax)
pop[1] <- n1[length(n1)] #starting population size
s <- rchisq(1, DF) #linear model for observation error
beta <- rnorm(1, BETA, SE)
esp <- rnorm(length(alpha1), 0, sdesp)
############
#determine harvest in year 1, har[1] #should turn into a function
#assumune population is large and harvest is "green"
#Note: har[t] is the harvest from april of t-1 to september of t; census date is June
har[1] <- rnorm(1, Hlist[[3]], sdH[[3]])+rnorm(1, Hp[[1]], sdHp[[1]])
har[1] <- ifelse(har[1] < 0, 0, har[1]) #check that harvest is not negative
############
for(t in 2:(Tmax+1)){
#project population
pop[t] <- pop[t-1] + pop[t-1]*r*(1-(pop[t-1]/K)^theta) -
har[t-1]/(1-crip)
pop[t] <- max(pop[t], 1e-5)
if(stochastic == TRUE){pop[t] <- rlnorm(1, log(pop[t]), sdpop)}
if(pop[t] < 1){
pop[t] <- 0
break
}
#determine next years hunt
mu <- q*pop[t-1] + alpha1 + esp
sigma.obs <- rnorm(2, beta*mu, sqrt(((SIGMA^2)*DF)/s) )
sigma.obs <- ifelse(sigma.obs < 0, 0, sigma.obs)
obs[t-1] <- mean(rnorm(2, mu, sigma.obs))
hunt[t] <- ifelse(obs[t-1] < threshold[[1]], 1, #monitor hunting season type
ifelse(obs[t-1] < threshold[[2]], 2, 3))
#Note: har[t] is the harvest from april of t-1 to september of t; census date is June
har[t] <- ifelse(obs[t-1] < threshold[[1]], rnorm(1, Hlist[[1]], sdH[[1]]),
ifelse(obs[t-1] < threshold[[2]],
rnorm(1, Hlist[[2]], sdH[[2]])+rnorm(1, Hp[[1]], sdHp[[1]]),
rnorm(1, Hlist[[3]], sdH[[3]])+rnorm(1, Hp[[1]], sdHp[[1]]))
)
har[t] <- ifelse(har[t] < 0, 0, har[t]) #check that harvest is not negative
har[t] <- har[t]*(1 - exp(-0.0001*pop[t])) #functional response
}
#determine last obs
mu <- q*pop[Tmax+1] + alpha1 + esp
sigma.obs <- rnorm(2, beta*mu, sqrt(((SIGMA^2)*DF)/s) )
sigma.obs <- ifelse(sigma.obs < 0, 0, sigma.obs)
obs[Tmax+1] <- mean(rnorm(2, mu, sigma.obs))
return(list(pop = pop[-1], obs = obs[-1], har = har[-1], hunt = hunt[-1]))
}
# #test it
# out <- readRDS("data/out.RDS")
# #load linear observation model
# fit <- readRDS("data/fit.RDS")
# #also need to run head of "theta.logistic.R to get fit object
# pop <- project_pop( BETA = fit$coefficients[1], #linear model slope
# SE = fit$coefficients[2], #linear model slope SE
# SIGMA = fit$sigma, #linear model RMSE
# DF = fit$df[2],
# sdpop = out$mean$sigma.proc,
# sdHp = list(green = out$mean$sd.har.p),
# sdH = list(red = out$mean$sigma.har,
# yellow = out$mean$sigma.har,
# green = out$mean$sigma.har))
# pop <- as.data.frame(pop)
# pcols <- c("red", "orange", "green")
# plot(1:100, pop$pop, type = "b", pch = 16, col = pcols[pop$hunt])
# plot(1:100, pop$obs, type = "b", pch = 16, col = pcols[pop$hunt])
# abline(h=c(23000, 28000))
# plot(1:100, pop$har, type = "b", pch = 16, col = pcols[pop$hunt])
# #does function work if we set red and green threshold the same?
# pop <- project_pop( BETA = fit$coefficients[1], #linear model slope
# SE = fit$coefficients[2], #linear model slope SE
# SIGMA = fit$sigma, #linear model RMSE
# DF = fit$df[2],
# sdpop = out$mean$sigma.proc,
# threshold = list(red = 23000, green = 23000),
# sdHp = list(green = out$mean$sd.har.p),
# sdH = list(red = out$mean$sigma.har,
# yellow = out$mean$sigma.har,
# green = out$mean$sigma.har))
# plot(1:100, pop$pop, type = "b", pch = 16, col = pcols[pop$hunt])
# plot(1:100, pop$obs, type = "b", pch = 16, col = pcols[pop$hunt])
# abline(h=c(23000, 28000))
# plot(1:100, pop$har, type = "b", pch = 16, col = pcols[pop$hunt])
# #yes!