Skip to content

Latest commit

 

History

History
49 lines (33 loc) · 2.88 KB

README.md

File metadata and controls

49 lines (33 loc) · 2.88 KB

2021-2 Aprendizaje automático I

Especialización en Analítica y Ciencia de Datos

Facultad de Ingeniería Universidad de Antioquia

Descripción del curso

Programación

Fecha         Sesión     Duración          Temas  
------------------------------------------------------
19/nov          01          4h              U1. Intro.ML. [TALLER] Script Básico     
20/nov          02          3h              U1. Reg.Lineal.Logística.
20/nov          03          3h              U1. Métricas. [TALLER] Simulación completa dataset real.
26/nov          04          4h              U2. Param.vs.NoParam. [TALLER] Knn vs Gaussian. Fronteras.     
27/nov          05          3h              U2. Complej.Modelos-Metod.Validación.
27/nov          06          3h              U2. Regularización. [TALLER] Metodologías de Validación.
03/dic          07          4h              U3. CART.Bagging.RF.Voting      
04/dic          08          3h              U3. SVM.SVR. 
04/dic          09          3h              U3. Estra.Multiclase.OVA.AVA. [TALLER] comparación de modelos de la semana
10/dic          10          4h              U4. Boosting.AdaBoost.GBT.Stacking    
11/dic          11          3h              U4. Selección.Características.SHAP values.
11/dic          12          3h              U4. [TALLER] Aplicación de las técnicas del módulo

Evaluación

 25% TALLER 4 y 7
 25% TALLER 9 y 13
 25% TALLER 15
 25% TALLER 18 ó 20

Entregas

Las entregas del curso (informes, notebooks, etc.) se realizarán en el Drive compartido con cada estudiante.

La fecha límite de entrega para los Talleres 4, 7, y 9 será el 02 de diciembre y para los Talleres 13, 15 y (18 ó 20) será el 16 de diciembre, en ambos casos hasta las 11:59 p.m.

Lecturas recomendadas

  • Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer-Verlag website pdf

  • C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag websitepdf

  • K. Murphy, Machine Learning A Probabilistic Perspective, MIT Press website

  • S. Theodoridis, Machine Learning a Bayesian and optimization Perspective, Academic Press. website 2nd Edition pdf 1st Edition