Skip to content

Latest commit

 

History

History
74 lines (47 loc) · 1.46 KB

README.md

File metadata and controls

74 lines (47 loc) · 1.46 KB

nano-smt

NanoSMT is a "toy" SMT Solver for educational purposes.

NanoSMT will combine a basic

  1. Propositional Logic (DPLL)

with a Nelson-Oppen combination of theory solvers for

  1. Equality & Uninterpreted Functions (Congruence Closure)
  2. Difference Constraints (Bellman-Ford)

Over time, we may add:

  • Fancy SAT heuristics like non-chronological backtrack, etc.
  • Linear Arithmetic via Simplex.

TODO

  • Write SAT solver

  • Test SAT solver

  • Write EQ solver

    • Write UnionFind
    • Write HashCons [see undefined in NelsonOppen] <--------- HEREHEREHEREHERE
  • Test EQ solver

  • Write NO = SAT + EQ

  • Test NO solver


  • Add UIF/CC to EQ solver
  • Test EUF
  • Test SAT+EUF
  • Write DIFF solver
  • Test DIFF solver
  • Test SAT+EUF+DIFF



{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-}

module Foo where

class Foo a where zz :: a -> String

data Obj = forall a. (Foo a) => Obj a

instance Show a => Foo a where zz = show

xs :: [Obj] xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String doShow [] = "" doShow ((Obj x):xs) = zz x ++ doShow xs

bob :: [Obj] -> [String] bob xs = map ((Obj x) -> zz x) xs