Skip to content

Latest commit

 

History

History
44 lines (38 loc) · 1.26 KB

README.md

File metadata and controls

44 lines (38 loc) · 1.26 KB

CL_Thesis

Latent Replay for Continual Learning on Edge devices with Efficient Architectures.

Models

Available models:

  • MobileNetV1:
    • mobilenetv1
  • MobileNetV2:
    • mobilenetv2
    • 0.75_mobilenetv2
    • 0.5_mobilenetv2
  • PhiNet:
    • phinet_2.3_0.75_5
    • phinet_1.2_0.5_6_downsampling
    • phinet_0.8_0.75_8_downsampling
    • phinet_1.3_0.5_7_downsampling
    • phinet_0.9_0.5_4_downsampling_deep
    • phinet_0.9_0.5_4_downsampling

Benchmarks

Available benchmarks:

  • Split CIFAR 10:
    • split_cifar10
  • CORe50:
    • core50
  • Split MNIST:
    • split_mnist

Training

Expirience Replay

python ExpReplay.py --model_name phinet_0.8_0.75_8_downsampling --benchmark_name split_cifar10 --lr 0.0001 --latent_layer 1 --train_epochs 4 --rm_size 1500 --weight_decay 0 --split_ratio 0 --device 0

Latent Replay in Elements

python LatentReplay.py --model_name phinet_0.8_0.75_8_downsampling --benchmark_name split_cifar10 --lr 0.0001 --latent_layer 9 --train_epochs 4 --rm_size 1500 --weight_decay 0 --split_ratio 0 --device 0"

Latent Replay in MB

python LatentReplay.py --model_name phinet_0.8_0.75_8_downsampling --benchmark_name split_cifar10 --lr 0.0001 --latent_layer 9 --train_epochs 4 --rm_size_MB 0.5 --weight_decay 0 --split_ratio 0 --device 0"