-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain.py
215 lines (175 loc) · 7.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import time
import test # Import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
def train(
cfg,
data_cfg,
img_size=416,
resume=False,
epochs=100,
batch_size=16,
accumulated_batches=1,
weights='weights',
multi_scale=False,
freeze_backbone=True,
var=0,
):
device = torch_utils.select_device()
if multi_scale: # pass maximum multi_scale size
img_size = 608
else:
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
latest = os.path.join(weights, 'latest.pt')
best = os.path.join(weights, 'best.pt')
# Configure run
train_path = parse_data_cfg(data_cfg)['train']
# print(train_path)
#train_path ="test"
# Initialize model
model = Darknet(cfg, img_size)
# Get dataloader
dataloader = LoadImagesAndLabels(train_path, batch_size, img_size, multi_scale=multi_scale, augment=True)
# print(dataloader.label_files)
# for i in range(5):
# x,y = next(iter(dataloader))
# print(x.shape)
# print("----------------------------")
# print(y)
lr0 = 0.001
if resume:
checkpoint = torch.load(latest, map_location='cpu')
# Load weights to resume from
model.load_state_dict(checkpoint['model'])
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
model.to(device).train()
# # Transfer learning (train only YOLO layers)
# for i, (name, p) in enumerate(model.named_parameters()):
# if p.shape[0] != 650: # not YOLO layer
# p.requires_grad = False
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9)
start_epoch = checkpoint['epoch'] + 1
if checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
best_loss = checkpoint['best_loss']
del checkpoint # current, saved
else:
start_epoch = 0
best_loss = float('inf')
# Initialize model with darknet53 weights (optional)
load_darknet_weights(model, os.path.join(weights, 'darknet53.conv.74'))
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
model.to(device).train()
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9)
# Set scheduler
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[54, 61], gamma=0.1)
model_info(model)
t0 = time.time()
for epoch in range(epochs):
epoch += start_epoch
print(('%8s%12s' + '%10s' * 9) % (
'Epoch', 'Batch', 'x', 'y', 'w', 'h', 'conf', 'cls', 'total', 'nTargets', 'time'))
# Update scheduler (automatic)
# scheduler.step()
# Update scheduler (manual) at 0, 54, 61 epochs to 1e-3, 1e-4, 1e-5
if epoch > 30:
lr = lr0 / 10
else:
lr = lr0
for g in optimizer.param_groups:
g['lr'] = lr
# Freeze darknet53.conv.74 for first epoch
if freeze_backbone:
if epoch == 0:
for i, (name, p) in enumerate(model.named_parameters()):
if int(name.split('.')[1]) < 75: # if layer < 75
p.requires_grad = False
elif epoch == 1:
for i, (name, p) in enumerate(model.named_parameters()):
if int(name.split('.')[1]) < 75: # if layer < 75
p.requires_grad = True
ui = -1
rloss = defaultdict(float) # running loss
optimizer.zero_grad()
for i, (imgs, targets) in enumerate(dataloader):
if sum([len(x) for x in targets]) < 1: # if no targets continue
continue
# SGD burn-in
if (epoch == 0) & (i <= 1000):
lr = lr0 * (i / 1000) ** 4
for g in optimizer.param_groups:
g['lr'] = lr
# Compute loss, compute gradient, update parameters
loss = model(imgs.to(device), targets, var=var)
loss.backward()
# accumulate gradient for x batches before optimizing
if ((i + 1) % accumulated_batches == 0) or (i == len(dataloader) - 1):
optimizer.step()
optimizer.zero_grad()
# Running epoch-means of tracked metrics
ui += 1
for key, val in model.losses.items():
rloss[key] = (rloss[key] * ui + val) / (ui + 1)
s = ('%8s%12s' + '%10.3g' * 9) % (
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, len(dataloader) - 1), rloss['x'],
rloss['y'], rloss['w'], rloss['h'], rloss['conf'], rloss['cls'],
rloss['loss'], model.losses['nT'], time.time() - t0)
t0 = time.time()
print(s)
# Update best loss
loss_per_target = rloss['loss'] / rloss['nT']
if loss_per_target < best_loss:
best_loss = loss_per_target
# Save latest checkpoint
checkpoint = {'epoch': epoch,
'best_loss': best_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, latest)
# Save best checkpoint
if best_loss == loss_per_target:
os.system('cp ' + latest + ' ' + best)
# Save backup weights every 5 epochs
if (epoch > 0) & (epoch % 100 == 0):
os.system('cp ' + latest + ' ' + os.path.join(weights, 'backup{}.pt'.format(epoch)))
# Calculate mAP
with torch.no_grad():
mAP, R, P = test.test(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 3 % (mAP, P, R) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
parser.add_argument('--weights', type=str, default='weights', help='path to store weights')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--freeze', action='store_true', help='freeze darknet53.conv.74 layers for first epoch')
parser.add_argument('--var', type=float, default=0, help='test variable')
opt = parser.parse_args()
print(opt, end='\n\n')
init_seeds()
train(
opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulated_batches=opt.accumulated_batches,
weights=opt.weights,
multi_scale=opt.multi_scale,
freeze_backbone=opt.freeze,
var=opt.var,
)