-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTravelRouteWeatherForecaster.R
353 lines (289 loc) · 5.62 KB
/
TravelRouteWeatherForecaster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Load required libraries
library(ggmap)
library(stringr)
library(owmr)
# Set up working directory
setwd("~")
setwd("TrafficRouteWeatherForecaster")
# Set Open Weather Map API
Sys.setenv(
OWM_API_KEY =
"xxxxxxxx"
)
# Shipping Origin
origin1 =
"1520 Luna Rd, Carrollton, TX 75006"
origin2 =
"4779 Hanoverville Rd, Bethlehem, PA 18020"
origin3 =
"164 W 31st St, Chattanooga, TN 37410"
# Register Google Cloud Key
register_google(
key =
"xxxxxxxx"
)
# Read in Test Data
orders =
read.csv("input/Orders.csv")
# Add a leading zero to 4-digit ZIPs
orders$Postal.Code =
sapply(
orders$Postal.Code,
function(x){
if(
nchar(x) < 5
){
paste0(0, x)
}
else{
x
}
}
)
orders$Shipping.Address =
paste(
orders$Address.Line.1,
orders$City,
orders$State,
orders$Postal.Code
)
shipping_addresses =
orders$Shipping.Address
order_numbers =
orders$Order.Number
# A function that calculates the shipping warehouse closest to the order address
calculate_optimal_origin =
function(x){
#### Origin 1 ####
origin1_dist =
mapdist(
from =
origin1,
to =
x
) %>%
select(
miles,
hours
)
origin1_dist$shipping_origin =
origin1
origin2_dist =
mapdist(
from =
origin2,
to =
x
) %>%
select(
miles,
hours
)
origin2_dist$shipping_origin =
origin2
origin3_dist =
mapdist(
from =
origin3,
to =
x
) %>%
select(
miles,
hours
)
origin3_dist$shipping_origin =
origin3
origin_dists =
rbind(
origin1_dist,
origin2_dist,
origin3_dist
)
origin =
origin_dists %>%
filter(
hours == min(hours)
) %>%
select(
shipping_origin
)
return(origin)
}
# Apply calculate_optimal_origin() to each shipping address
shipping_warehouse =
lapply(
shipping_addresses,
calculate_optimal_origin
)
# Transform shipping_warehouse into a dataframe
shipping_origin =
as.data.frame(
rbindlist(
shipping_warehouse
)
)
# Assign shipping warehouse origins to a vector
shipping_warehouses =
shipping_origin$shipping_origin
# Add the shipping warehouse origins to the 'orders' dataframe
orders$Shipping.Warehouse =
shipping_warehouses
# Pull Driving Route from Point of Origin to Destination
get_shipping_routes =
function(x, y, z){
routes =
route(
from =
x,
to =
y,
structure =
"legs"
)
# Pull all start points for longitude and latitude
start =
routes %>%
select(
start_lon,
start_lat,
)
# Rename the column names
colnames(start) =
c(
"lon",
"lat"
)
# Pull all end points for longitude and latitude
end =
routes %>%
select(
end_lon,
end_lat
)
# Rename the column names
colnames(end) =
c(
"lon",
"lat"
)
# Combine the longitude-latitude coordinate
coordinates =
as.data.frame(
rbind(
start,
end
)
)
coordinates =
round(coordinates, 2)
coordinates =
unique(coordinates)
res <-
mapply(
FUN =
function(lon, lat){
revgeocode(
c(
lon,
lat
),
output =
"address"
)
},
coordinates$lon,
coordinates$lat
)
zip =
str_extract(
res,
"\\d{5},"
)
zip =
unique(zip)
zip =
paste0(
zip,
" US"
)
#### Get Weather Forecast Function ####
getForecast =
function(x){
route_forecasts =
get_forecast(
x,
cnt =
40,
units =
"imperial"
)
route_forecasts_2 =
route_forecasts$list
route_forecasts_2$zip =
x
return(route_forecasts_2)
}
forecasts =
lapply(
zip,
getForecast
)
forecasts =
rbindlist(forecasts, fill = T)
forecasts =
forecasts %>%
group_by(
zip
) %>%
summarize(
max_temp =
max(
main.temp_max
)
)
forecasts$exceeds_max_temp =
ifelse(
forecasts$max_temp >= 75,
TRUE,
FALSE
)
forecasts$supplement_form =
ifelse(
forecasts$exceeds_max_temp == FALSE,
"bottle",
"blister pack"
)
forecasts$supplement_form =
ifelse(
any(
forecasts$exceeds_max_temp == TRUE
),
"bottle",
"blister"
)
forecasts$Order.Number =
z
data_to_append_to_order =
forecasts %>%
select(
Order.Number,
supplement_form
) %>%
group_by(
Order.Number
) %>%
unique()
return(data_to_append_to_order)
}
df =
mapply(
get_shipping_routes,
shipping_warehouses,
shipping_addresses,
order_numbers,
SIMPLIFY =
FALSE
)
df =
rbindlist(df)