-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlenet.py
29 lines (25 loc) · 948 Bytes
/
lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Adapted from https://github.com/adiyoss/GCommandsPytorch
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
def __init__(self, num_classes=30):
super(LeNet, self).__init__()
self.dropout = False
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(16280, 1000)
self.fc2 = nn.Linear(1000, num_classes)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
if self.dropout:
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
else:
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x
# return F.log_softmax(x)