-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
296 lines (247 loc) · 10 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gc
import logging
import os
import sys
import peract_config
import hydra
import numpy as np
import torch
import pandas as pd
from omegaconf import DictConfig, OmegaConf, ListConfig
from rlbench.action_modes.action_mode import BimanualMoveArmThenGripper
from rlbench.action_modes.action_mode import BimanualJointPositionActionMode
from rlbench.action_modes.arm_action_modes import BimanualEndEffectorPoseViaPlanning
from rlbench.action_modes.arm_action_modes import BimanualJointPosition, JointPosition
from rlbench.action_modes.gripper_action_modes import BimanualDiscrete
from rlbench.action_modes.action_mode import MoveArmThenGripper
from rlbench.action_modes.arm_action_modes import EndEffectorPoseViaPlanning
from rlbench.action_modes.gripper_action_modes import Discrete
from rlbench.backend import task as rlbench_task
from rlbench.backend.utils import task_file_to_task_class
from yarr.runners.independent_env_runner import IndependentEnvRunner
from yarr.utils.stat_accumulator import SimpleAccumulator
from helpers import utils
from helpers import observation_utils
from yarr.utils.rollout_generator import RolloutGenerator
import torch.multiprocessing as mp
from agents import agent_factory
def eval_seed(
train_cfg, eval_cfg, logdir, env_device, multi_task, seed, env_config
) -> None:
tasks = eval_cfg.rlbench.tasks
rg = RolloutGenerator()
train_cfg.method.robot_name = eval_cfg.method.robot_name
agent = agent_factory.create_agent(train_cfg)
stat_accum = SimpleAccumulator(eval_video_fps=30)
cwd = os.getcwd()
weightsdir = os.path.join(logdir, "weights")
env_runner = IndependentEnvRunner(
train_env=None,
agent=agent,
train_replay_buffer=None,
num_train_envs=0,
num_eval_envs=eval_cfg.framework.eval_envs,
rollout_episodes=99999,
eval_episodes=eval_cfg.framework.eval_episodes,
training_iterations=train_cfg.framework.training_iterations,
eval_from_eps_number=eval_cfg.framework.eval_from_eps_number,
episode_length=eval_cfg.rlbench.episode_length,
stat_accumulator=stat_accum,
weightsdir=weightsdir,
logdir=logdir,
env_device=env_device,
rollout_generator=rg,
num_eval_runs=len(tasks),
multi_task=multi_task,
)
env_runner._on_thread_start = peract_config.config_logging
manager = mp.Manager()
save_load_lock = manager.Lock()
writer_lock = manager.Lock()
# evaluate all checkpoints (0, 1000, ...) which don't have results, i.e. validation phase
if eval_cfg.framework.eval_type == "missing":
weight_folders = os.listdir(weightsdir)
weight_folders = sorted(map(int, weight_folders))
env_data_csv_file = os.path.join(logdir, "eval_data.csv")
if os.path.exists(env_data_csv_file):
env_dict = pd.read_csv(env_data_csv_file).to_dict()
evaluated_weights = sorted(map(int, list(env_dict["step"].values())))
weight_folders = [w for w in weight_folders if w not in evaluated_weights]
print("Missing weights: ", weight_folders)
# pick the best checkpoint from validation and evaluate, i.e. test phase
elif eval_cfg.framework.eval_type == "best":
env_data_csv_file = os.path.join(logdir, "eval_data.csv")
if os.path.exists(env_data_csv_file):
env_dict = pd.read_csv(env_data_csv_file).to_dict()
existing_weights = list(
map(int, sorted(os.listdir(os.path.join(logdir, "weights"))))
)
task_weights = {}
for task in tasks:
weights = list(env_dict["step"].values())
if len(tasks) > 1:
task_score = list(env_dict["eval_envs/return/%s" % task].values())
else:
task_score = list(env_dict["eval_envs/return"].values())
avail_weights, avail_task_scores = [], []
for step_idx, step in enumerate(weights):
if step in existing_weights:
avail_weights.append(step)
avail_task_scores.append(task_score[step_idx])
assert len(avail_weights) == len(avail_task_scores)
best_weight = avail_weights[
np.argwhere(avail_task_scores == np.amax(avail_task_scores))
.flatten()
.tolist()[-1]
]
task_weights[task] = best_weight
weight_folders = [task_weights]
print("Best weights:", weight_folders)
else:
raise Exception("No existing eval_data.csv file found in %s" % logdir)
# evaluate only the last checkpoint
elif eval_cfg.framework.eval_type == "last":
weight_folders = os.listdir(weightsdir)
weight_folders = sorted(map(int, weight_folders))
weight_folders = [weight_folders[-1]]
print("Last weight:", weight_folders)
elif eval_cfg.framework.eval_type == "all":
weight_folders = os.listdir(weightsdir)
weight_folders = sorted(map(int, weight_folders))
# evaluate a specific checkpoint
elif type(eval_cfg.framework.eval_type) == int:
weight_folders = [int(eval_cfg.framework.eval_type)]
print("Weight:", weight_folders)
elif isinstance(eval_cfg.framework.eval_type, ListConfig):
weight_folders = [int(w) for w in eval_cfg.framework.eval_type]
print("Checking specified checkpoints:", weight_folders)
else:
print(type(eval_cfg.framework.eval_type))
raise Exception("Unknown eval type")
if len(weight_folders) == 0:
logging.info(
"No weights to evaluate. Results are already available in eval_data.csv"
)
sys.exit(0)
# evaluate several checkpoints in parallel
# NOTE: in multi-task settings, each task is evaluated serially, which makes everything slow!
split_n = utils.split_list(weight_folders, eval_cfg.framework.eval_envs)
for split in split_n:
processes = []
for e_idx, weight in enumerate(split):
p = mp.Process(
target=env_runner.start,
args=(
weight,
save_load_lock,
writer_lock,
env_config,
e_idx % torch.cuda.device_count(),
eval_cfg.framework.eval_save_metrics,
eval_cfg.cinematic_recorder,
),
)
p.start()
processes.append(p)
for p in processes:
p.join()
del env_runner
del agent
gc.collect()
torch.cuda.empty_cache()
@hydra.main(config_name="eval", config_path="conf")
def main(eval_cfg: DictConfig) -> None:
logging.info("\n" + OmegaConf.to_yaml(eval_cfg))
start_seed = eval_cfg.framework.start_seed
logdir = os.path.join(
eval_cfg.framework.logdir,
eval_cfg.rlbench.task_name,
eval_cfg.method.name,
"seed%d" % start_seed,
)
train_config_path = os.path.join(logdir, "config.yaml")
if os.path.exists(train_config_path):
with open(train_config_path, "r") as f:
train_cfg = OmegaConf.load(f)
else:
raise Exception(f"Missing seed{start_seed}/config.yaml. Logdir is {logdir}")
# sanity checks
assert(train_cfg.method.name == eval_cfg.method.name)
assert(train_cfg.method.agent_type == eval_cfg.method.agent_type)
for task in eval_cfg.rlbench.tasks:
assert(task in train_cfg.rlbench.tasks)
env_device = utils.get_device(eval_cfg.framework.gpu)
logging.info("Using env device %s." % str(env_device))
gripper_mode = eval(eval_cfg.rlbench.gripper_mode)()
arm_action_mode = eval(eval_cfg.rlbench.arm_action_mode)()
action_mode = eval(eval_cfg.rlbench.action_mode)(arm_action_mode, gripper_mode)
is_bimanual = eval_cfg.method.robot_name == "bimanual"
if is_bimanual:
# TODO: automate instantiation with eval
task_path = rlbench_task.BIMANUAL_TASKS_PATH
else:
task_path = rlbench_task.TASKS_PATH
task_files = [
t.replace(".py", "")
for t in os.listdir(task_path)
if t != "__init__.py" and t.endswith(".py")
]
eval_cfg.rlbench.cameras = (
eval_cfg.rlbench.cameras
if isinstance(eval_cfg.rlbench.cameras, ListConfig)
else [eval_cfg.rlbench.cameras]
)
obs_config = observation_utils.create_obs_config(
eval_cfg.rlbench.cameras,
eval_cfg.rlbench.camera_resolution,
eval_cfg.method.name,
eval_cfg.method.robot_name
)
if eval_cfg.cinematic_recorder.enabled:
obs_config.record_gripper_closing = True
multi_task = len(eval_cfg.rlbench.tasks) > 1
tasks = eval_cfg.rlbench.tasks
task_classes = []
for task in tasks:
if task not in task_files:
raise ValueError('Task %s not recognised!.' % task)
task_classes.append(task_file_to_task_class(task, is_bimanual))
# single-task or multi-task
if multi_task:
env_config = (
task_classes,
obs_config,
action_mode,
eval_cfg.rlbench.demo_path,
eval_cfg.rlbench.episode_length,
eval_cfg.rlbench.headless,
eval_cfg.framework.eval_episodes,
train_cfg.rlbench.include_lang_goal_in_obs,
eval_cfg.rlbench.time_in_state,
eval_cfg.framework.record_every_n,
)
else:
env_config = (
task_classes[0],
obs_config,
action_mode,
eval_cfg.rlbench.demo_path,
eval_cfg.rlbench.episode_length,
eval_cfg.rlbench.headless,
train_cfg.rlbench.include_lang_goal_in_obs,
eval_cfg.rlbench.time_in_state,
eval_cfg.framework.record_every_n,
)
logging.info("Evaluating seed %d." % start_seed)
eval_seed(
train_cfg,
eval_cfg,
logdir,
env_device,
multi_task,
start_seed,
env_config,
)
if __name__ == "__main__":
peract_config.on_init()
main()