-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
170 lines (142 loc) · 5.72 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import cv2
import os
from flask import Flask, request, render_template
from datetime import date
from datetime import datetime
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import joblib
app = Flask(__name__)
nimgs = 10
imgBackground=cv2.imread("background .png")
datetoday = date.today().strftime("%m_%d_%y")
datetoday2 = date.today().strftime("%d-%B-%Y")
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
if not os.path.isdir('Attendance'):
os.makedirs('Attendance')
if not os.path.isdir('static'):
os.makedirs('static')
if not os.path.isdir('static/faces'):
os.makedirs('static/faces')
if f'Attendance-{datetoday}.csv' not in os.listdir('Attendance'):
with open(f'Attendance/Attendance-{datetoday}.csv', 'w') as f:
f.write('Name,Roll,Time')
def totalreg():
return len(os.listdir('static/faces'))
def extract_faces(img):
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_points = face_detector.detectMultiScale(gray, 1.2, 5, minSize=(20, 20))
return face_points
except:
return []
def identify_face(facearray):
model = joblib.load('static/face_recognition_model.pkl')
return model.predict(facearray)
def train_model():
faces = []
labels = []
userlist = os.listdir('static/faces')
for user in userlist:
for imgname in os.listdir(f'static/faces/{user}'):
img = cv2.imread(f'static/faces/{user}/{imgname}')
resized_face = cv2.resize(img, (50, 50))
faces.append(resized_face.ravel())
labels.append(user)
faces = np.array(faces)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(faces, labels)
joblib.dump(knn, 'static/face_recognition_model.pkl')
def extract_attendance():
df = pd.read_csv(f'Attendance/Attendance-{datetoday}.csv')
names = df['Name']
rolls = df['Roll']
times = df['Time']
l = len(df)
return names, rolls, times, l
def add_attendance(name):
username = name.split('_')[0]
userid = name.split('_')[1]
current_time = datetime.now().strftime("%H:%M:%S")
df = pd.read_csv(f'Attendance/Attendance-{datetoday}.csv')
if int(userid) not in list(df['Roll']):
with open(f'Attendance/Attendance-{datetoday}.csv', 'a') as f:
f.write(f'\n{username},{userid},{current_time}')
def getallusers():
userlist = os.listdir('static/faces')
names = []
rolls = []
l = len(userlist)
for i in userlist:
name, roll = i.split('_')
names.append(name)
rolls.append(roll)
return userlist, names, rolls, l
@app.route('/')
def home():
names, rolls, times, l = extract_attendance()
return render_template('home.html', names=names, rolls=rolls, times=times, l=l, totalreg=totalreg(), datetoday2=datetoday2)
@app.route('/start', methods=['GET'])
def start():
names, rolls, times, l = extract_attendance()
if 'face_recognition_model.pkl' not in os.listdir('static'):
return render_template('home.html', names=names, rolls=rolls, times=times, l=l, totalreg=totalreg(), datetoday2=datetoday2, mess='There is no trained model in the static folder. Please add a new face to continue.')
ret = True
cap = cv2.VideoCapture(0)
while ret:
ret, frame = cap.read()
if len(extract_faces(frame)) > 0:
(x, y, w, h) = extract_faces(frame)[0]
cv2.rectangle(frame, (x, y), (x+w, y+h), (86, 32, 251), 1)
cv2.rectangle(frame, (x, y), (x+w, y-40), (86, 32, 251), -1)
face = cv2.resize(frame[y:y+h, x:x+w], (50, 50))
identified_person = identify_face(face.reshape(1, -1))[0]
add_attendance(identified_person)
cv2.rectangle(frame, (x,y), (x+w, y+h), (0,0,255), 1)
cv2.rectangle(frame,(x,y),(x+w,y+h),(50,50,255),2)
cv2.rectangle(frame,(x,y-40),(x+w,y),(50,50,255),-1)
cv2.putText(frame, f'{identified_person}', (x,y-15), cv2.FONT_HERSHEY_COMPLEX, 1, (255,255,255), 1)
cv2.rectangle(frame, (x,y), (x+w, y+h), (50,50,255), 1)
imgBackground[162:162 + 480, 55:55 + 640] = frame
cv2.imshow('Attendance', imgBackground)
if cv2.waitKey(1) == 27:
break
cap.release()
cv2.destroyAllWindows()
names, rolls, times, l = extract_attendance()
return render_template('home.html', names=names, rolls=rolls, times=times, l=l, totalreg=totalreg(), datetoday2=datetoday2)
@app.route('/add', methods=['GET', 'POST'])
def add():
newusername = request.form['newusername']
newuserid = request.form['newuserid']
userimagefolder = 'static/faces/'+newusername+'_'+str(newuserid)
if not os.path.isdir(userimagefolder):
os.makedirs(userimagefolder)
i, j = 0, 0
cap = cv2.VideoCapture(0)
while 1:
_, frame = cap.read()
faces = extract_faces(frame)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 20), 2)
cv2.putText(frame, f'Images Captured: {i}/{nimgs}', (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 20), 2, cv2.LINE_AA)
if j % 5 == 0:
name = newusername+'_'+str(i)+'.jpg'
cv2.imwrite(userimagefolder+'/'+name, frame[y:y+h, x:x+w])
i += 1
j += 1
if j == nimgs*5:
break
cv2.imshow('Adding new User', frame)
if cv2.waitKey(1) == 27:
break
cap.release()
cv2.destroyAllWindows()
print('Training Model')
train_model()
names, rolls, times, l = extract_attendance()
return render_template('home.html', names=names, rolls=rolls, times=times, l=l, totalreg=totalreg(), datetoday2=datetoday2)
if __name__ == '__main__':
app.run(debug=True)