forked from lorenmh/mnist_handwritten_json
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_to_json.py
executable file
·72 lines (51 loc) · 1.95 KB
/
convert_to_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/local/bin/python3
'''
Loren Howard - 1/13/2018
The file format is documented here:
http://yann.lecun.com/exdb/mnist/
This script simply converts the files from http://yann.lecun.com/exdb/mnist/
into a simple JSON format;
The outputted JSON file is an array of objects with two fields:
image: an array with 784 0-255 pixel values (28*28*1byte image)
label: the corresponding label for this image
'''
import json
import struct
UNPACK = (('data/test_img.ubyte', 'data/test_lbl.ubyte', 'mnist_handwritten_test.json'),
('data/train_img.ubyte', 'data/train_lbl.ubyte', 'mnist_handwritten_train.json'))
IMG_HEADER_FMT = '>IIII'
IMG_HEADER_SZ = 16
LBL_HEADER_FMT = '>II'
LBL_HEADER_SZ = 8
LBL_FMT = 'B'
LBL_SZ = 1
JSON_INDENT = 2
def struct_unpack_file(struct_fmt, struct_sz, f):
while True:
bytes = f.read(struct_sz)
if not bytes:
break
yield struct.unpack(struct_fmt, bytes)
def unpack(img_fname, lbl_fname, o_fname):
print('Unpacking %s and %s and outputting as %s' % (img_fname, lbl_fname,
o_fname))
img_file = open(img_fname, 'rb')
lbl_file = open(lbl_fname, 'rb')
img_header = img_file.read(IMG_HEADER_SZ)
lbl_header = lbl_file.read(LBL_HEADER_SZ)
_, num_img, num_row, num_col = struct.unpack(IMG_HEADER_FMT, img_header)
_, num_lbl = struct.unpack(LBL_HEADER_FMT, lbl_header)
if num_img != num_lbl:
raise ValueError('number of labels != number of images')
img_sz = num_row * num_col
img_fmt = 'B' * img_sz
img_gen = struct_unpack_file(img_fmt, img_sz, img_file)
lbl_gen = struct_unpack_file(LBL_FMT, LBL_SZ, lbl_file)
lst = [{'image': img, 'label': lbl} for img,[lbl] in zip(img_gen, lbl_gen)]
o_file = open(o_fname, 'w')
json.dump(lst, o_file, indent=JSON_INDENT)
img_file.close()
lbl_file.close()
o_file.close()
for args in UNPACK:
unpack(*args)